• Title/Summary/Keyword: root development

Search Result 2,152, Processing Time 0.029 seconds

Effect of Trichokonins on the Growth Characteristics of Paeonia ostii 'Fengdan' Seedling Roots

  • Chu, Peng-fei;Cao, Xing;Yang, Zhen-jing;Zhang, Xiu-sheng;Piao, Yong-ji;Jo, Hyun-Ju
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1051-1056
    • /
    • 2016
  • The growth characteristics of Paeonia ostii 'Fengdan' seedlings roots in response to trichokonins-spray treatment were investigated in this study. One-year-old seedlings of P. ostii 'Fengdan' were potted in plastic cups containing garden mold and grown under field conditions. The results showed that application of trichokonins significantly promoted root growth in P. ostii 'Fengdan' seedlings. The total root projection area, total root surface area, total root volume, total root length, root number and root diameter of seedlings treated with 0.25 mg/L trichokonins were higher by 141.70, 116.59, 119.44, 55.97, 348.88 and 127.78%, respectively, than that of the control. Thus, the results supported the hypothesis that good growth condition for roots could directly improve their nutrient absorption and utilization efficiency, promoting plant growth and development.

Endodontic approach in a replanted tooth with an immature root apex and chronic apical periodontitis: a case report

  • Mori, Graziela Garrido;Andrade, Bruna Souza;Araujo, Marina Bardelli
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.29.1-29.9
    • /
    • 2020
  • This study describes the clinical steps taken in the treatment of a patient who had an avulsed right upper central incisor that presented with incomplete root development and chronic apical periodontitis. A 7-year-old boy was referred from a private dentist to a dental office specializing in endodontics. The tooth had remained in a dry environment for 20 minutes, and tooth replantation was performed at an emergency appointment. After clinical and radiographic examinations, root canal decontamination was performed, followed by several changes in intracanal calcium hydroxide medication. Blood clot formation was attempted, but bleeding within the root canal was insufficient; therefore, we opted for an intracanal medication change to stimulate mineralized tissue formation in the apical region. Root obturation was performed 45 days after the last change of intracanal medication, and clinical, radiographic, and tomographic follow-up examinations were performed at 3, 6, 18, and 40 months after the endodontic intervention. The increase in thickness and length of the root structure and the absence of root resorption were verified through follow-up examinations. Therefore, it was concluded that the procedures used were successful for tooth replantation.

Growth Responses of seven Intestinal Bacteria Against Phellodendron amurense Root-Derived Materials

  • Kim, Min-Jeong;Lee, Sang-Hyun;Cho, Jang-Hee;Kim, Moo-Key;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • The growth responses of Phellodendron amurense root-derived materials against seven intestinal bacteria were examined, using an impregnated paper disk agar diffusion method and spectrometric method under $O_2$-free condition. The biologically active constituent of the P. amurense root extract was characterized as berberine chloride ($C_{20}H_{18}NO_{41}Cl$) using various spectroscopic analyses. The growth responses varied depending on the bacterial strain, chemicals, and dose tested. At 1 mg/disk, berberine chloride strongly inhibited the growth of Clostridium perfringens, and moderately inhibited the growth of Escherichia coli and Streptococcus mutans without any adverse effects on the growth of three lactic acid-bacteria (Bifidobacterium bifidum, B. longum, and Lactobacillus acidophilus). The structure-activity relationship revealed that berberine chloride exhibited more growth-inhibiting activity against C. perfringens, E. coli, and S. mutans than berberine iodide and berberine sulfate. These results, therefore, indicate that the growth-inhibiting activity of the three berberines was much more pronounced as chloridated analogue than iodided and sulphated analogues. As for the morphological effect caused by 1 mg/disk of berberine chloride, most strains of C. perfringens were damaged and killed, indicating that berberine chloride showed a strong inhibition against C. perfringens. As naturally occurring growth-inhibiting agents, the P. amurense root-derived materials described could be useful as a preventive agent against diseases caused by harmful intestinal bacteria such as clostridia.

Adventitious Root Cultures of Panax ginseng C.V. Meyer and Ginsenoside Production through Large-Scale Bioreactor System

  • Hahn, Eun-Joo;Kim, Yun-Soo;Yu, Kee-Won;Jeong, Cheol-Seung;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The adventitious root of Panax ginseng C.A. Meyer is regarded as an efficient alternative to cell culture or hairy root culture for biomass production due to its fast growth and stable metabolite production. To determine optimal culture conditions for the bioreactor culture of ginseng roots, experiments have been conducted on physical and chemical factors such as bioreactor type, dissolved oxygen, gas supply, aeration, medium type, macro- and micro-elements, medium supplement during culture period, sucrose concentration, osmotic agents, medium pH and light. Elicitation is a key step to increase ginsenoside accumulation in the adventitious roots but biomass growth is severely inhibited by elicitor treatment. To obtain high ginsenoside content with avoiding biomass decrease, we applied two-stage bioreactor culture system. Ginseng adventitious roots were cultured for 40 days to maximize biomass increase followed by elicitation for 7 days to enhance ginsenoside accumulation. We also experimented on types and concentrations of jasmonate to determine optimal elicitation methods. In this paper, we discussed several factors affecting the root propagation and ginsenoside accumulation. Based on the results obtained from previous experiments we have established large-scale bioreactor system (1 ton-10 ton) for the efficient production of ginseng adventitious roots and bioactive compounds including ginsenoside. Still, experiments are on going in our laboratory to determine other bioactive compounds having effects on diet, high blood pressure, DPPH elimination and increasing memories.

Overexpression of GmAKR1, a Stress-Induced Aldo/keto Reductase from Soybean, Retards Nodule Development

  • Hur, Yoon-Sun;Shin, Ki-Hye;Kim, Sunghan;Nam, Kyoung Hee;Lee, Myeong-Sok;Chun, Jong-Yoon;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.217-223
    • /
    • 2009
  • Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.

Effect of Lotus Root (Nelumbo nucifera) on the Quality of Beef Hamburger Patties (연근 첨가가 우육 햄버거 패티의 품질에 미치는 영향)

  • Mo, Eunkyung;Kim, Hyeyoung
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.4
    • /
    • pp.817-829
    • /
    • 2016
  • In order to develop functional hamburger steak patties, various concentrations of lotus root (Nelumbo nucifera) were incorporated into them. The quality characteristics of the hamburger patties prepared after the addition of 5, 10, 15, 20 or 25% (w/w) lotus root were investigated. The moisture contents of the groups with lotus root were significantly higher than that of the control group. The crude fat and crude protein contents of the control group were higher than those of the other groups. No significant difference in the crude ash content was observed among the groups. The cooking loss rate, rate of reduction in diameter, and reduction in thickness of the groups with lotus root were significantly lower than those of the control group. Accroding to the results, lotus root inhibit cooking loss and help to keep moisture after cooking process. No significant difference in the L value was observed among the groups. The a and b values of the groups with lotus root were significantly decreased compared to those of the control group. No significant difference in hardness was observed among the groups. it suggest lotus root didn't affect the texture of hamburger patties. In the quantitative descriptive analysis, no significant difference in the color and fresh odor was observed among the groups. The groups with lotus root were softer than the control group. The groups with 10 to 25 % of lotus root showed higher juiciness and a sweeter taste than the control group. The preference of appearance, texture, flavor and overall acceptability of the groups with 10 to 25% lotus root were higher than those of the other groups, including the control group. In conclusion, lotus root can increase the acceptability of hamburger patties and 10-25% would appear to be the proper amount of it to use.

EFFECT OF THE NUCLEAR FACTOR I-C ON THE FORMATION OF HERTWIG'S EPITHELIAL ROOT SHEATH DURING ROOT DEVELOPMENT (Nuclear factor I-C가 치근발생 과정에서 Hertwig's 상피초 형성에 미치는 영향)

  • Shin, In-Cheol;Park, Joo-Cheol;Jeong, Moon-Jin;Oh, Hyun-Ju;Park, Sun-Hwa;Lee, Chang-Seop;Kim, Heung-Joong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.576-583
    • /
    • 2005
  • Tooth formation is a complex developmental process that is mediated through a series of reciprocal epithelial-mesenchymal interactions. Several signal pathways and transcription factors have been implicated in regulating molar crown development, but relatively little is known about the regulation of root development. It was reported that NFI-C knockout mice showed abnormal root formation with normal crown. The aims of this study are to elucidate how the NFI-C regulate the determine of root shape and odontoblasts differentiation. We carried out immunohistochemistry using cytokeratin to investigate the role of Hertwig's epithelial root sheath and DSPP mRNA in-situ hybridization to conform the nature of root dentin during root development in NFI-C knockout mice. Cytokeratin reacted with all the HERS cells and the continuity of cytokeratin positive cells between the HERS cells and enamel epithelium was lost in the cervical region both wild and K/O types. After root dentin deposition cytokeratin positive-HERS cells showed irregularity and loss of polarity in the cervical region in K/O type. DSPP mRNA was strongly expressed in odontoblasts of crown and root dentin in wild type mice, whereas expression of DSPP mRNA was restricted in odontoblast of crown dentin in the K/O type. During root formation in NFI-C knockout mice, HERS normally grow out of the crown but fail to induce odontoblast differentiation in root portion. These results suggest that NFI-C may play important roles in odontoblast differentiation during root dentin formation.

  • PDF

Effect of Subsoiling on Growth and Yield of Sweetpotato in Continuous Sweetpotato Cropping Field (고구마 연작지에서 심토파쇄에 따른 고구마 생육 및 수량성 변화)

  • Lee, Hyeong-Un;Chung, Mi-Nam;Han, Seon-Kyeong;Ahn, Seung-Hyun;Lee, Joon-Seol;Yang, Jung-Wook;Song, Yeon-Sang;Kim, Jae-Myung;Nam, Sang-Sik;Choi, In-Hu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Storage root yield of sweetpotato was decreasing owing to continuous sweetpotato cropping, debasement of soil physical properties, increasing incidence of pest and disease. This study was conducted to evaluate the changes in physicochemical properties of the soil owing to subsoiling (subsoiling to 50 cm depth), and the effect on growth and yield of sweetpotato. The subsoiling treatments included subsoiling treated every year for two years, subsoiling in the first year, and no subsoiling control. The soil physical properties measured were bulk density, hardness, porosity, three phase. Bulk density, porosity, soild (%) of three phase were improved by subsoiling in topsoil and subsoil. Main vine length and vine yield in subsoiling soil were higher than those in no subsoiling soil, but those were not significantly different. Yield of marketable storage root in subsoiling soils treated every year for two years and treated in the first year was more increased 17% and 20% than no subsoiling soil, respectively. The number of marketable storage root per plant was also higher in subsoiling soils than no subsoiling soil, but it was not significantly different. Soluble solid contents and total free sugar contents of storage root of sweetpotato were not significantly different among the treatments. These results show that improving soil physical properties by subsoiling could promote high yield of marketable storage root in continuous sweetpotato cropping field.

Fus Expression Patterns in Developing Tooth

  • Kim, Eun-Jung;Lee, Jong-Min;Jung, Han-Sung
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • Recently, the RNA/DNA-binding protein FUS, Fused in sarcoma, was shown to play a role in growth, differentiation, and morphogenesis in vertebrates. Because little is known about Fus, we investigated its expression pattern in murine tooth development. In situ hybridization of mouse mandibles at specific developmental stages was performed with a DIG-labeled RNA probe. During early tooth development, Fus was detected in the dental epithelium and dental mesenchyme at 11 days postcoitum (dpc) and 12 dpc. From 14 dpc, Fus was strongly expressed in the dental papilla and the cervical loop of the dental epithelium. At postnatal day 4 (PN4), Fus expression was observed in the odontoblasts, ameloblasts, the proliferation zone of the pulp, and the cervical loop. At PN14, the expression pattern of Fus was found to be maintained in the odontoblasts and the proliferation zone of the pulp. Furthermore, Fus expression was especially strong in the Hertwig's epithelial root sheath (HERS). Therefore, this study suggests that Fus may play a role in the HERS during root development.

The Outbreak and Propagule formation of black root rot caused by Calonectria crotalariae in Korea (콩 흑색뿌리썩음병의 발생과 Propagule의 형성)

  • Sung J.M.;Park J.H.;Lee S.C.;Chung B.K.
    • Korean journal of applied entomology
    • /
    • v.19 no.4 s.45
    • /
    • pp.228-233
    • /
    • 1980
  • The infection rate of soybean black root rot disease caused by Calonectria crotalariae was about $14\%$. The isolated fungi from the infected soybean roots and stems were Calonectria crotalariae, Fusarium solani, F. roseum, Phomopsis sojae, Pythium aphanidermatum, Rhizoctonia solani and Macrophomina sp. Among them, C. crotalariae was the most virulent pathogen under the laboratory conditions. Mycelial growth and microsclerotial formation were good on PSA containing 1000cc of water, 100g of potato and 20g of sugar. Mycelial growth, sporulation and microsclerotial formation were good on sterilized root. Perithecial formation was better in the dark condition than in the light. Survival of macroconidia was not available between $0\~25\%$ soil water content. Microsclerotia and mycelium in infected plant debris were survived for 4 months at to $8\%\;50\%$ soil water content. The plant height, when inoculated with $1.2\%$ inoculum density, reached approximately half of uninoculated plants. Disease severity was much higher at nonsterilized soil than completely sterilized soil. It was determined that the host range of this pathogen includes soybean, peanut, green bean and red bean.

  • PDF