• Title/Summary/Keyword: root crop

Search Result 1,684, Processing Time 0.028 seconds

Effect of Green Manure Crop Cultivation on Soil Chemical Properties and Root Rot Disease in Continuous Cropping Field of Ginseng (녹비작물 재배가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Park, Kyung Hoon;Lee, Seung Ho;Jang, In Bok;Jin, Mei Lan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Background: Some plants have harmful effects on fungi and bacteria as well as other plants. Incorporating such plant into soil as green manure is effective in reducing population densities of soil pathogens. Methods and Results: Twenty-three species of green manure crops were cultivated after the harvest of 6-year-old ginseng and then incorporated into the soil at the flowering stage. The following year, the root rot ratio of 2-year-old ginseng and soil chemical properties were investigated. In the absence of green manure addition, the $NO_3$ content, electric conductivity (EC), and K content decreased by 95%, 79% and 65%, respectively. In the presence of green manure addition, $P_2O_5$ and $NO_3$ contents reduced by 41% and 25%, respectively. The "survived root ratio" of 2-year-old ginseng significantly increased by 56.2%, 47.5%, and 47.3%, in the Sorghum sudanense, Ricinus communis and Helianthus tuberosus treatment, respectively. In addition, there was a significant increase in the "survived root ratio" in the Secale cereale, Chrysanthemum morifolium, Atractylodes macrocephala, and Smallanthus sonchifolius treatments. The "survived root ratio" of ginseng showed a significant positive correlation with the soil pH and a negative correlation with the $NO_3$ contents, and EC. Conclusions: Cultivation of plant form the Chrysanthemum family as green manure, using mainly the rhizomes was effective for the control of root rot disease of ginseng.

Effects of Root on Bulk Density of Soils Tested by Volume Check Apparatus through Water-filling

  • Lee, Gye-Jun;Lee, Jeong-Tae;Ryu, Jong-Soo;Oh, Dong-Shig;Kim, Jeom-Soon;Lee, Yeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.505-508
    • /
    • 2015
  • Soil bulk density is a key parameter for soil physical property. Much root placed in rhizosphere soil lump, especially in grassland and orchard, makes it difficult to measure soil bulk density. This experiment was carried out to countermeasure the above drawbacks. Volume check apparatus using water-filling method was made of acryl for higher accuracy in bulk density measurement. 10 types of land cover, including bare, tall fescue, rye, and soybean, were used for determining the relationships between root and bulk density. In this study, higher root volume resulted in higher differences in bulk density between in-situ core soil and root-ridded core soil, which indicated the volume check apparatus through water-filling could be useful for increasing the accuracy of bulk density of soils with much root.

Soil Chemical Properties, Microbial Community and Ginseng Root Rot in Suppressive and Conducive Soil Related Injury to Continuously Cropped Ginseng (인삼 연작장해 유발토양과 억제토양의 화학성, 미생물상 및 뿌리썩음병 발생 특성)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Mun Won;Jang, In Bok;Kwon, Ra Yeong;Heo, Hye Ji
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.142-151
    • /
    • 2020
  • Background: Suppressive soil inhibits soil-borne diseases if pathogens are present, and ginseng does not show injury even if replanted in the same field. Methods and Results: Soil chemical properties and microbial community of soil were investigated in soil suppressive and conducive to ginseng root rot. Root rot disease in 2-year-old ginseng was tested by mixing conducive soil, with suppressive or sterilized suppressive soil. The root rot ratio in suppressive soil was 43.3% compared to 96.7% in conducive soil. Biological factors acted to inhibit the root rot because disease ratio was increased in the sterilized suppressive soil compared to that in non-suppressive soil. The suppressive soil had lower pH, nitrate nitrogen and sodium than the conducive soil. Dominat bacteria and fungi (more than 1.0%) were 3 and 17 species in conducive soil and 7 and 23 species in suppressive soil, respectively. The most predominant fungi were Pseudaleuria sp. HG936843 (28.70%) in conducive soil and Pseudogymnoascus roseus (7.52%) in suppressive soil. Conclusion: Microbial diversity was more abundant in the suppressive soil than in the conducive soil, and the proportion of pathogens (Nectriaceae sp.) causing root rot was significantly lower in the suppressive soil than in the conducive soil.

Evaluation of Root Characters Associated with Lodging Tolerance by Seedling Test in Rice

  • Si-Yong, Kang;Won-Ha, Yang;Hyun-Tak, Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.309-315
    • /
    • 1999
  • Rice seedling test was conducted to check the loging tolerance at ripening stage through evaluating the root characters. Thirteen Korean and foreign rice cultivars with direct seeding adaptable or high quality characteristics were grown in a cell pot and under submerged paddy. The root characters and pushing resistance of rice hill were determined at seedling and ripening stage, respectively. The diameter of crown root at the 7th and 8th leaf stages was thicker in lodging tolerance cultivars than those of others and showed significant-positive correlation with both pushing resistance and crown root diameter of mature plants. Also, the tensile strength of crown root at the 7th and 8th leaf stage showed highly positive correlation with the tensile strength of crown root of mature plants. The number of crown root at 7th leaf stage was significant-positively correlated with that of mature plant. The diameter of seminal root was not significantly correlated with the diameter of crown root throughout the whole growth stage. These results indicate that the diameter, tensile strength and number of crown root associated with root lodging tolerance can be detected with the seedling at about 7th or 8th leaf stage, and the seedling test using the cell pot is an useful and practical method to select lodging tolerant cultivars or lines of rice based on root characters, especially diameter of crown root.

  • PDF

Inhibition Effect on Root Rot Disease of Panax ginseng by Crop Cultivation in Soil Occurring Replant Failure (윤작물 재배에 의한 인삼 뿌리썩음병 발생 억제 효과)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Lan, Jin Mei;Jang, In Bok;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2015
  • To study the effect of crop rotation on the control of ginseng root rot, growth characteristics and root rot ratio of 2-year-old ginseng was investigated after the crops of 18 species were cultured for one year in soil contaminated by the pathogen of root rot. Fusarium solani and Cylindrocarpon destructans were detected by 53.2% and 37.7%, respectively, from infected root of 4-year-old ginseng cultivated in soil occurring the injury by continuous cropping. Content of $NO_3$, Na, and $P_2O_5$ were distinctly changed, while content of pH, Ca, and Mg were slightly changed when whole plant of crops cultured for one year were buried in the ground. All of EC, $NO_3$, $P_2O_5$, and K were distinctly increased in soil cultured sudangrass, peanut, soybean, sunnhemp, and pepper. All of EC, $NO_3$, $P_2O_5$, and K among inorganic component showed negative effect on the growth of ginseng when they were excessively applied on soil. The growth of ginseng was promoted in soil cultivated perilla, sweet potato, sudangrass, and welsh onion, while suppressed in Hwanggi (Astragalus mongholicus), Deodeok (Codonopsis lanceolata) Doraji (Platycodon grandiflorum), Gamcho (Glycyrrhiza uralensis), Soybean. All of chicory, lettuce, radish, sunnhemp, and welsh onion had effective on the inhibition of ginseng root rot, while legume such as soybean, Hwanggi, Gamcho, peanut promoted the incidence of root rot. Though there were no significant correlation, $NO_3$ showed positive correlation, and Na showed negative correlation with the incidence of root rot.

Growth characteristics and variation in component of sweet potato (Ipomoea batatas) cultivars according to cultivation period

  • Hwang, Eom-Ji;Nam, Sang-Sik;Lee, Joon-Seol;Lee, Hyeong-Un;Yang, Jung-Wook;Go, San;Paul, Naranyan Chandra
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.198-198
    • /
    • 2017
  • Cultivated varieties of sweet potato were from dry texture type to tender texture type on the basis of consumer preferences. There are many differences in the quantity of sweet potato, starch content, pigment, and sugar content depending on the cultivation season and area, even in the same variety. Therefore, in this study, we attempted to establish optimum time of harvesting through growth characteristics and variation in component like starch, sugar, polyphenol and flavonoid. Four sweet potato varieties were used in this experiment. Among them, Jinhongmi (JHM) & Yulmi (YM) were as dry texture type and Pungwonmi (PWM) & Hogammi (HGM) were as tender texture type. Sweet potatoes were transplanted on 23 May, 2016 and were investigated storage root weight and component contents every 20 days from 60 days to 120 days and surveyed yield at 110, 120, 130 days after transplantation. Result revealed that storage root weight of YM, JHM, and HGM were 30.1, 38.9, 20.8 g respectively in 60 days after transplanting. Storage roots of PWM gerw faster with the weight of 88.2 g. In 120 days after transplanting, storage root weight varied from 88.3 to 118.7 g, HGM was the smallest, and PWM was the largest. Sugar contents of sweet potato ranged from 21.0 to $23.8Brix^{\circ}$ in 60 days after transplanting and from 27.5 to $30.78Brix^{\circ}$ in 120 days after transplanting. In particular, the sugar content of HGM was the highest over $30Brix^{\circ}$ after 80 days. The starch content of dry texture type (YM, JHM) increased from 15.5% to 20.4% and tender texture type (PWM, HGM) increased from 11.0% to 17.3%. Starch content tended to be high in dry type sweet potatoes. The content of polyphenol and flavonoid were highest in 60 days after transplanting and was reduced according to cultivation period. The total yield of PWM was high as 3,154 kg/10a and large storage root of over 250 g accounted for 47.4% in 110 days after transplanting. Storage root (YM, JHM, HGM) of 81~150 g accounted for 34.9% ~ 43.2% in 120 days after transplanting. These are the most marketable. Because consumer in Korea prefers small, round and about 100g size sweet potato. The ratio of large storage root (over 250 g) were increased in all varieties at 130 days after transplanting. Therefore, it is considered appropriate to harvest PWM at 110 days and YM, JHM, HGM at 120 days after transplanting, which planted in late May.

  • PDF

Influence of different strains of Agrobacterium rhizogenes on hairy root induction and growth in Scutellaria baicalensis (Agrobacterium rhizogenes strains이 황금 모상근 유도와 생육에 미치는 영향)

  • Park, Woo-Tae;Kim, Young-Seon;Park, Nam-Il;Kim, Haeng-Hoon;Lee, Sook-Young;Park, Sang-Un
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.213-217
    • /
    • 2011
  • Agrobacterium rhizogenes, a gram-negative soil bacterium, is one of the most widely studied among them. A, rhizogenes can transfer T-DNA, excised from Ri (root inducing)-plasmids from the bacterial to the plant cell. It is the causal agent of 'hairy root' diseases in plants, and has been used for the production of hairy root cultures from a multitude of species. Five different strains of Agrobacterium rhizogenes differed in their ability to induce Scutellaria baicalensis hairy roots and also showed varying effects on the growth in hairy root cultures. A. rhizogenes R 1000 is the most effective strain for the induction (57.3%) and growth (11.9 g $L^{-1}$) in hairy root of Scutellaria baicalensis. Our results demonstrate that use of suitable strains of A. rhizogenes may allow study of the regulation of flavone biosynthesis in hairy root cultures of Scutellaria baicalensis.

Determination of Regression Model for Estimating Root Fresh Weight Using Maximum Leaf Length and Width of Root Vegetables Grown in Reclaimed Land (간척지 재배 근채류의 최대 엽장과 엽폭을 이용한 지하부 생체중 추정용 회귀 모델 결정)

  • Jung, Dae Ho;Yi, Pyoung Ho;Lee, In-Bog
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.204-213
    • /
    • 2020
  • BACKGROUND: Since the number of crops cultivated in reclaimed land is huge, it is very difficult to quantify the total crop production. Therefore, a non-destructive method for predicting crop production is needed. Salt tolerant root vegetables such as red beets and sugar beet are suitable for cultivation in reclaimed land. If their underground biomass can be predicted, it helps to estimate crop productivity. Objectives of this study are to investigate maximum leaf length and weight of red beet, sugar beet, and turnips grown in reclaimed land, and to determine optimal model with regression analysis for linear and allometric growth models. METHODS AND RESULTS: Maximum leaf length, width, and root fresh weight of red beets, sugar beets, and turnips were measured. Ten linear models and six allometric growth models were selected for estimation of root fresh weight and non-linear regression analysis was conducted. The allometric growth model, which have a variable multiplied by square of maximum leaf length and maximum leaf width, showed highest R2 values of 0.67, 0.70, and 0.49 for red beets, sugar beets, and turnips, respectively. Validation results of the models for red beets and sugar beets showed the R2 values of 0.63 and 0.65, respectively. However, the model for turnips showed the R2 value of 0.48. The allometric growth model was suitable for estimating the root fresh weight of red beets and sugar beets, but the accuracy for turnips was relatively low. CONCLUSION: The regression models established in this study may be useful to estimate the total production of root vegetables cultivated in reclaimed land, and it will be used as a non-destructive method for prediction of crop information.

Evaluation of Fiber Content According to the Cultivation Period of New Sweetpotato Varieties

  • Won Park;Mi Nam Chung;Koan Sik Woo;Hyeong-Un Lee;Tae Hwa Kim;Su Jung Kim;Kyo Hwui Lee;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.54-54
    • /
    • 2022
  • Recently, as one of the major problems in the quality of sweetpotato, occurrence of thin and long fibrous tissues in storage root acts as a negative factor when consumers eat sweetpotato. In this study, the fiber content was compared according to the cultivation period in storage roots of 'Sodammi' and 'Hopungmi', which were newly bred and developed, and in that of 'Hogammi', which contains a lot of fibrous tissues. To isolate of fiber from storage root, the Association Official Analytical Chemists (AOAC) method was applied for quantifying fiber present in storage root of sweetpotato. The fiber contents isolated by this method is calculated by converting the weight of the storage root. The fiber content was measured every 20 days from 60 to 120 days after planting. As a result of this study, the lowest amount of fiber was 'Hopungmi' (70~140 mg/100 g), and the highest amount of fiber was observed in 'Hogammi' (115~223 mg/100 g). 'Sodammi' showed an intermediate level (104~149 mg/100 g) between the fiber content of 'Hopungmi' and 'Hogammi'. The fiber contents of 'Hopungmi' was 39% lower than that of 'Hogammi'. As the increased cultivation periods, the fiber contents showed a tendency to decrease. In the future research, the length, thickness, and fiber contents will be investigated to compare the degree of taste inhibition.

  • PDF

Growth characteristics of 2-year-old cultivars in Korean ginseng (Panax ginseng C. A. Meyer) conditioned artificial wet injury (인위적인 습해 유발조건에서 2년생 인삼 품종의 생육특성)

  • Kim, Jang-Uk;Lee, Jung-Woo;Jo, Ick-Hyun;Kim, Dong-Hwi;Kim, Kee-Hong;Kim, Young-Chang
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.299-304
    • /
    • 2015
  • This study was conducted to investigate growth characteristics to develop the technique to select resistant cultivar by wet injury at an early stage through the automatic irrigation maintaining 30, 20, 10 kPa respectively using native variety, Chunpoong, Yunpoong, Gumpoong and Sunun. The aerial growth was decreased at 10 kPa compared to 30 kPa. In addition, the survival rate was decreased by 66.6%, 62.3%, 33.8% at 30, 20, 10 kPa, respectively. The survival rate of Chunpoong and Gumpoong were higher than others at 10 kPa. While root growth characteristics such as root length, root weight, number of lateral root and side root were tended to decrease, root diam was no significant or increased. And the more humid condition is, the more the incidence rate of rusty root and rough skin were tended to increase. The epidermal thickness of Chunpoong and Gumpoong was increased but the figures of native variety, Yunpoong and Sunun were decreased at 10 kPa compared to 30 kPa. But, the tissue stiffness of root was decreased at 10 kPa compared to 30 kPa.