• Title/Summary/Keyword: root and leaf

Search Result 1,814, Processing Time 0.031 seconds

Effect of Metals on Anti - Oxidase Activity in Persicaria vulgaris Webb. et Moq. (중금속이 봄여뀌(Persicaria vulgaris Webb. et Moq.)의 항산화효소활성에 미치는 영향)

  • Sung, Mi-Hyang;Jeong, Hyung-Jin;Kim, Kun-Woo;Kwak, Sang-Soo
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.346-353
    • /
    • 1996
  • To study the effects of metal ions on the activities of antioxidative enzymes, the activities of superoxide dismutase(SOD), peroxidase(POD), catalase(CAT) of Persicaria vulgaris has been studied after treating with Cd, Cu, Zn and Al. 1. The activities of SOD in leaf and stem were decreased, but that in root was increased. Among the metal ions studied in this report, Al gave the highest increase in SOD activity in root. 2. The activities of POD after treating with Cd or Cu did not show any significant differences. POD activities after treating with Zn and Al has been decreased, however, that in root showed increased activities after treating with Zn 5,000 ppm or Al 500 ppm. 3. The activity of CAT in leaf was decreased with every metals studied. The CAT activity in root was increased with increased concentration. The root treated with Al showed highest activity. 4. The presence of isozymes after treated metal ions has been studied in gel electrophoresis. The POD treated plant did not show any new isozymes, but the intensity of one of pre-existent band was increased. The SOD treated plant showed the several new isozymes.

  • PDF

Effect of Temperature Variables on Growth and Inorganic Nutrient Contents of Codonopsis lanceolata

  • Kwon, Soo-Jeong;Seo, Dong-Yeon;Cho, Gab-Yeon;Lee, Moon-Soon;Boo, Hee-Ock;Woo, Sun-Hee;Kim, Hag-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • This study was conducted to investigate the effects of temperature and shade, which are basic environmental conditions, on growth, yield, inorganic components, and general components of Codonopsis lanceolata, in order to obtain basic data for improving yield capacity. In natural light, in the 15, 20, and $25^{\circ}C$ groups, the plant heights ranged between 218.9 cm and 223.9 cm, and there was no significant difference between groups. However, the leaf size was larger in shade, and the leaf area was significantly larger in the 15 and $30^{\circ}C$ groups. In natural light, root length and diameter were shorter and thinner when the temperature was higher, and growth was highly suppressed at $30^{\circ}C$. With regards to macroelements, the contents of Na, Mg, and P increased as temperature increased, regardless of the plant part; however, no constant tendency was observed in K and Ca according to temperature. The contents of Mg and Ca (from highest to lowest) were in the order leaf>stem>root, whereas the contents of Na, P, and K were in the order stem>leaf>root. Contents of general components varied according to temperature, and were highest at $30^{\circ}C$. While the plant height was increased under the constant $25^{\circ}C$+DIF (Difference between day and night temperature) condition, growth was suppressed in the -DIF group, in which the night temperature was higher than the day temperature, which suggests that a change in night temperature is one of the factors that affects the growth of C. lanceolata. As in the growth of the above-ground parts, fresh weight of the root was high in the constant $25^{\circ}C$ group and +DIF group. Notably, it was more than 2.5 times the fresh weights in the constant $15^{\circ}C$ group, constant $20^{\circ}C$ group, and -15 DIF group.

Performance of Chinese Cabbage and Radish Affected by Simulated Acid Rain (인공산성(人工酸性)비가 배추와 무의 생육(生育)에 미치는 영향(影響))

  • Lee, Suk-Soon;Hong, Seung-Beom;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.217-222
    • /
    • 1996
  • A green-house experiment was conducted to know the performance of Chinese cabbage and radish applied with simulated acid rain(SAR) on the leaf and/or soil. The pHs of SAR and normal water were 2.7 and 6.0, respectively. The pHs of SAR and normal water applied on leaf/soil were 6.0/6.0, 6.0/2.7, 2.7/6.0, and 2.7/2.7 and they were applied fifteen times at the two- or three-day intervals with 10mm at a time. Leaf application of SAR caused brown spots in both crops, while no such symptoms were observed in soil application. SAR applied on the leaf or soil increased chlorophyll content significantly in Chinese cabbage, but slightly in radish. Leaf or soil application of SAR did not affect N, P, and K concentrations in both crops. The sulfur content in radish leaf increased by leaf or soil application of SAR, while in the root it increased by soil application only. Yield of Chinese cabbage was not affected by SAR, while both leaf and root yields of radish were significantly reduced by leaf application of SAR compared with soil application.

  • PDF

Acceptance of Hondonbyung with Different Mixing Ratio of Leaf and Root of Angelicae powder (당귀와 승검초의 혼합비율에 따른 혼돈병의 기호도)

  • Choi Eun-Jung;Kim Hyang-Sook
    • Korean journal of food and cookery science
    • /
    • v.22 no.1 s.91
    • /
    • pp.88-95
    • /
    • 2006
  • To enhance the acceptance of hondonbyung ddeuksal, the optimal conditions for the addition of the leaf and root of Angelicae powder were evaluated with the central composite design and response surface methodology. With variations in the mixing ratio of the leaf and root of Angelicae powder, the smell and overall quality of hondonbyung differed significantly, but the color, taste and texture did not. The optimal conditions for the leaf and root content of Angelicae powder, predicted on the basis of each corresponding sensory parameters of hondonbyung ddeuksal, were $2.25\sim3.00%\;and\;0.50\sim0.63%$ for color, 1.55% and 0.85% for smell, 1.95% and 0.80% for taste, $1.00\sim1.22%\;and\;0.58\sim0.99%$ for texture and $2.79\sim3.00%\;and\;0.50\sim0.56%$ for overall quality, respectively. As for hondonbyung komul, there were no significant differences in color, smell, taste, texture or overall quality among the traditional group, and 10% and 20% reduced sweetener' groups.

The Growth and Physiological Responses of Cacalia firma Seedlings by Shading Conditions in Forest Farming (임간재배 시 병풍쌈 유묘의 차광처리별 생장 및 생리 반응)

  • Yoon, Jun Hyuck;Jeon, Kwon Seok;Song, Ki Seon;Park, Yong Bae;Moon, Yong Sun;Lee, Do Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Cacalia firma is a perennial plant in Asteraceae, Parasenecio that distributed in Korea, China, and Japan. As dietary style changes for well-being life, consumer's demand of functional food and organic vegetables is getting increased. This study was conducted to investigate the optimum light conditions of P. firmus in forest farming. One year old seedlings were grown under four different light conditions 10%, 20%, 30%, and 50% of sunlight by shading (equals 50%, 30%, 20%, and 10% relative brightness respectively) and non-treated control under full sunlight. They were analyzed for early growth and physiological response. Seedlings grown under 75% shading showed similar height, root growth, and leaf water content to control. However, their leaf length, width, and total leaf area were increased, which caused increased leaf dry weight and total dry weight. Especially, seedlings under 95% shading showed 40% increase in height and more leaf growth and leaf water content, although they had shorter main root length and root collar diameter than control. In addition specific leaf area (SLA) and leaf area ratio (LAR) were higher than control and indicated that they were statistically significant difference from control. Higher SLA refers thinner leaf thickness, higher LAR means larger leaf area. The results indicate seedlings under 95% shading have higher water content, thinner leaf, and wider lightinterception areas. It is plausible that P. firmus is active in chlorophyll activities and carbon dioxide assimilation at even lower light conditions. These results suggest that the optimum light level of P. firmus for artificial cultivation in forest farming ranges from 75~95% shading (20%-10% of relative brightness). When salability as 'sanchae' (wild edible greens) is considered, P. firmus could be cultivated under 75% shading in forest farming and expected to have better taste and higher yield. We suggest these results as basic data of P. firmus for possible forest farming.

Nutritional Composition of White-flowered and Pink-flowered Lotus in Different Parts (백련(白蓮)과 홍련(紅蓮)의 부위별 영양성분)

  • Heo, Nam-Chil;Choi, Kyeong-Cheol;Ahn, Yang-Jun;Yang, Ho-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.14-19
    • /
    • 2007
  • The nutritional compositions of different parts (roots, leaves, and seeds) of two lotus species (Nelumbo nucifera Gaertner), Muan's white-flowered and Naju's pink-flowered, are as follows; crude protein content in the seed was four times higher and the carbohydrate content was three times higher than those in the root and leaf. Comparing between the species, the crude protein content of the white lotus was the higher than that of the pink lotus, but the carbohydrate content was comparatively lower. The potassium content of the minerals in all samples was much higher than those in others. Additionally, the iron content of the root was much higher than those in the leaf and seed. In both species, the major free sugar in the root was sucrose; the main sugars in the leaf were fructose and alucose, and those in the seed were stachyose, raffinose, and sucrose. Among amino acids, glutamic acid showed the highest level in the leaf and seed, while aspartic acid was the highest in the root.

Comparative Analysis of the Constituents of the Leaves and Roots of Rumex crispus and their Effects on the Differentiation of Human Osteoblast-like MG-63 Cells (소리쟁이 잎과 뿌리 성분 분석 및 사람 조골 유사 MG-63 세포 분화에 미치는 효과 비교)

  • Park, Heajin;Jeong, Jaehoon;Hyun, Hanbit;Kim, Jihye;Kim, Haesung;Oh, Hyun Il;Hwang, Hye Seong;Kim, Ha Hyung
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.307-313
    • /
    • 2014
  • Rumex crispus (curled dock), which is a perennial wild plant, has long been used as a laxative, astringent, and medicine to treat blood and skin diseases. We recently reported that the roots of R. crispus are an effective nutraceutical for bone. This study prepared ethanol extracts of the leaves and roots of R. crispus, and analyzed the major constituents using liquid chromatography and mass spectrometry. In addition, their effects on the proliferation and differentiation of human osteoblast-like MG-63 cells, such as cell viability, alkaline phosphatase (ALP) activity, collagen content, and mineralization, were compared. The chromatograms of the chemical constituents of the two extracts exhibited quite different profiles: quercetin and quercitrin were identified as major peaks in the leaf extract, whereas cinnamtannin B1 and procyanidin isomers were the major peaks for the root extract. Neither extract was cytotoxic at concentrations of < $25{\mu}g/ml$. ALP activity and collagen synthesis-which are markers of the early stage of osteogenesis-in MG-63 cells were significantly increased upon the addition of the root extract compared with the addition of the leaf extract. In contrast, the leaf extract had a more stimulatory effect on mineralization-which is marker of the late stage of osteogenesis-in MG-63 cells than did the root extract. In conclusion, extracts of both leaves and roots of R. crispus stimulated the bone-forming activity of osteoblasts; in particular, the root extract was more effective in the early stage of osteoblast differentiation, while the leaf extract was more effective in the late stage. This difference in anabolic activity may be due to differences in the constituents of the leaves and roots. The leaves and roots of R. crispus appear to complement each other as stimulators of bone formation.

Overcoming Kalmia-Induced Growth Inhibition of Picea mariana by Mycorrhizal Inoculation (Picea mariana 생장(生長)을 억제(抑制)하는 Kalmia angustifolia 에 대한 외생균근(外生菌根)의 영향(影響))

  • Mallik, A.U.;Zhu, H.;Park, Young-Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.429-444
    • /
    • 1998
  • Objective of this study was to select ectomycorrhizal fungi for black spruce(Picea mariana) inoculation to overcome the growth inhibitory effects of Kalmia angustifolia. Nineteen isolates representing 11 species of ectomycorrhizal fungi were tested for their abilities to grow and form mycorrhizae with black spruce seedlings in the presence of water leachate of leaves of Kalmia. Mycelium growth of 9 isolates were inhibited by the leaf leachate. Colony diameter and biomass of the other 10 isolates were either increased or unaffected under the same conditions. Acidic pH of the culture medium(pH 3 and 4) inhibited some of the fungi, but a combination of acidic pH and the leaf leachate was more inhibitory. Thirteen isolates were able to form ectomycorrhizae with black spruce in presence of 25% leaf leachate in pure culture. Four isolates, Paxillus involutus(NF4), Cenococcum geophilum(GB12), Laccaria laccata(GB23), and E-strain(GB45) formed mycorrhizae more successfully than the others in presence of up to 50% Kalmia leaf leachate. Black spruce seedlings pre-inoculated with these fungi were grown with Kalmia leaf leachate and live Kalmia plants during a four month greenhouse experiment. Abundant mycorrhizae(77-91% of root tips) were developed on seedlings pre-inoculated with P. involutus, L. laccata and E-strain but relatively poor mycorrhization(32% of root tips) resulted with C. geophidum. Over 90% of the short root mycorrhizae were attributed to the inoculated fungi although indigenous mycorrhizae also occurred on most seedlings. Persistence of the mycorrhizae was not affected by living Kalmia plants. Over 80% of the mycorrhizae on seedlings inoculated with P. involutus, L. laccata and E-strain and 53% of the mycorrhizae on seedlings inoculated with C. geophilum were attributable to the inoculant fungi. Control seedlings formed about 45% ectomycorrhizal short roots with indigenous fungi. The L. laccata and C. geophilum inoculated seedlings exhibited enhanced mycorrhizae formation in presence of Kalmia leaf leachate. Mycorrhizae formation with inoculant fungi was 4-15% lower at pH 4 than at pH 5, with the greatest inhibition occurring for L. laccata. Seedlings inoculated with P. involutus had the greatest shoot and root growth followed by L. laccata and E-strain inoculated seedlings. The P. involutus and L. laccata inoculated seedlings were significantly taller with more shoot dry biomass than the uninoculated(control) seedlings. E-strain inoculated seedlings had significantly higher shoot dry biomass and significantly lower number of first order lateral roots compared to the control but other growth parameters such as height, root dry weight and number of short root tips were not significantly different from the control. Seedlings inoculated with C. geophilum were not significantly different from the uninoculated seedlings in any of the growth parameters except for the number of first artier lateral roots which was significantly less than the control seedlings.

  • PDF

Effects of Dandelion on Oxygen Free Radical Generating and Scavenging System of Brain in Streptozotocin-Induced Diabetic Rats (서양민들레가 Streptozotocin으로 유발한 당뇨 횐쥐의 뇌조직 중 유해 활성산소 생성 및 제거 효소계에 미치는 영향)

  • 김명주;조수열
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.500-505
    • /
    • 2002
  • Many studies have shown that hyperglycemia leads to an increase of lipid peroxidation in diabetic patients and animals, reflecting a rise reactive oxygen species production. It is increasingly recognized that brain is another site of diabetic organ damage. Accordingly, this study was to investigate the effect of dandelion on oxygen free radical generating and scavenging system of brain in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were divided into diabetic (control) and diabetic-dandelion supplemented groups. Dandelion was supplemented for 4 weeks with dandelion leaf and root powder (DLP, DRP) or dandelion leaf and root water extract (DLW, DRW) based on 11.4 g of raw dandelion/kg diet. Diabetes was induced by single injection STZ (55 mg/kg B.W., i.p.)in a citrate buffer. Oxygen free radical generating enzymes, cytochrome P-450, amino-pyrine N-demethylase, aniline hydroxylase and xanthine oxidase, were lowered in dandelion supplemented-groups compared to the control group. Superoxide dismutase, catalase and gluthathione peroxidase activities of brain were also lower in dandelion leaf and root supplemented-group than in the control group, whereas glutathione S-transferase activity and gluthathione content were increased in dandelion supplemented-groups compared to the control group. With regard to the lipid peroxidation products, the malondialdehyde content of brain was lower in dandelion supplemented groups. Therefore, it could be suggested that powder and water extract of dandelion leaf or root are beneficial in preventing diabetic complication from lipid peroxidation and free radical in brain of diabetic rat brain.

Effect of Blanching on Dietary Fiber and Free Sugar Content of Vegetables

  • Rheeno Lee;YongSuk Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.164-169
    • /
    • 2023
  • Vegetables are rich sources of dietary fiber, which exhibit various health benefits. In the Republic of Korea, vegetables are consumed after cooking using different methods. However, they are most commonly eaten raw or blanched. In this study, chamnamul, sesame leaf, Fischer's ragwort, burdock root, and garlic stem from Korea were analyzed according to the Korean Food Code, and changes in dietary fiber content after blanching were compared. Blanching reduced the total dietary fiber (TDF) content in chamnamul (from 3.67±0.03 to 2.61±0.14 g/100 g), burdock root (from 4.95±0.40 to 3.89±0.10 g/100 g), and sesame leaf (from 4.32±0.12 to 3.65±0.17 g/100 g), but increased it in Fischer's ragwort (from 6.09±0.49 to 6.43±0.01 g/100 g) and garlic stem (from 4.52±0.35 to 5.09±0.04 g/100 g). Sucrose, glucose, and fructose were detected in the vegetables; however, sesame leaf did not have sucrose. Fresh burdock root had the highest sucrose content (1.71±0.07 g/100 g) whereas garlic stem had the highest glucose and fructose content (1.65±0.02 and 1.73±0.02 g/100 g, respectively) compared with other vegetables. Upon blanching, the free sugar content of vegetables decreased for all sugars except for sucrose, which increased in Fischer's ragwort (from 0.10±0.01 to 0.14±0.01 g/100 g) and garlic stem (from 0.76±0.00 to 0.83±0.01 g/100 g). These results can provide information on blanching-associated changes in the content of dietary fiber and free sugar in foods prepared using these vegetables.