• Title/Summary/Keyword: rooftop

Search Result 283, Processing Time 0.033 seconds

Evaluating Changing Trends of Surface Temperature in Winter according to Rooftop Color using Remotely Sensed Thermal Infrared Image (원격 열화상을 이용한 지붕색상별 겨울철 표면온도 변화추세 비교 평가)

  • Ryu, Taek Hyoung;Um, Jung Sup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.27-37
    • /
    • 2013
  • A roof surface temperature monitoring, utilizing remotely sensed thermal infrared image has been specifically proposed to explore evidential data for heating load in winter by cool roof. The remotely sensed thermal infrared image made it possible to identify area-wide patterns of changing trends of surface temperature according to rooftop color (white, black, blue, green) which cannot be acquired by traditional field sampling. The temperature difference of cool roof having a higher solar reflectance were ranged from $3^{\circ}C$ up to $9^{\circ}C$, compared to the general roofs. It is confirmed that there is a significant potential to the energy saving by introducing the cool roof in a Korean climate since up to $18.46^{\circ}C$ difference in cool roof, compared to the general roofs in summer were already identified in Seoul, South Korea. It is anticipated that this research output could be used as a valuable reference in identifying heating load in winter by cool roof since an objective monitoring has been proposed based on the area-wide measured, fully quantitative performance of remotely sensed thermal infrared image.

Effect of Intercropping Ratio on the Cherry Tomato with Basil on the Growth, Physiological, and Productivity Parameters on the Rooftop in Urban Agriculture (옥상 도시농업에서 방울토마토(Lycopersicon esculentum)와 바질(Ocimum basilicum)간의 공영식재가 생육, 생리, 생산성에 미치는 영향)

  • Ju, Jin-Hee;Song, Hee-Yeon;Oh, Deuk-Kyun;Park, Sun-Yeong;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.709-717
    • /
    • 2021
  • This study evaluated the growth, physiological responses and productivity based on the intercropping ratio of cherry tomato (Lycopersicon esculentum L.) with basil (Ocimum basilicum L.). on the rooftops to determine out the efficient ratio in urban agriculture. From April to September 2019, an experiment was conducted on the rooftop of Konkuk University Glocal Campus. Cherry tomato and basil were selected as companion plants for eco-friendly urban agriculture on the rooftops. Each plot was created with a width of 100 cm, length of 100 cm, and height of 25 cm. After installing drainage and waterproof layers from bottom to top, substrate was laid out with a height of 20 cm. Intercropping ratio was consisted of a single tomato plant (TC), 2:1 tomato to basil (T2B1), 1:1 tomato to basil (T1B1), 1:2 tomato to basil 2 (T1B2), and a single basil plant (BC), were conducted using a randomized complete plot design with five treatments and three replication (a total 15 plots). Measurements were divided into growth, physiological responses, and productivity parameters, and detailed items were investigated and analyzed by classifying them into plant height, leaf length, leaf width, number of leaves, root length, root collar caliper, chlorophyll contents, fresh weight, dry weight, number of fruit, fruit caliper, fruit weight, and sugar content. Comparative analyses of cherry tomato with basil plants by intercropping ratio, growth, physiological, and productivity responses are determined to be efficient when the ratio of cherry tomato to basil ratio is 2:1 or 1:1.

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

Energy self-sufficiency of office buildings in four Asian cities

  • Kim, Jong-Jin
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This paper examines the climatic and technical feasibilities of zero energy buildings in Seoul, Shanghai, Singapore and Riyadh. Annual and seasonal energy demands of office buildings of various scales in the above cities were compared. Using optimally tilted rooftop PV panels, solar energy production potentials of the buildings were estimated. Based on the estimates of onsite renewable energy production and building energy consumption, the energy self-sufficiencies of the test buildings were assessed. The economic feasibilities of the PV systems in the four locations were analyzed. Strategies for achieving zero energy buildings are suggested.

An Analysis of Thermal Environment Change according to Green Roof System (옥상녹화 조성에 따른 열환경 변화분석)

  • Park, Ji-Young;Jung, Eung-Ho;Kim, Dae-Wuk;Cha, Jae-Gyu;Shimizu, Aki
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.11a
    • /
    • pp.100-103
    • /
    • 2009
  • The impermeable area on the surface of city has been increased as buildings and artificial landcover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural eco system. There arise the environmental problems peculiar to city including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate the heat reduction effect according to the development of green roof system and to quantify the heat reduction effect by analyzing through simulation the heat environment before and after green roof system. For thermal environment analysis, Thermo-Render 3.0 was used that was developed by Tokyo Industrial College to simulate. The simulation showed that the heat island index before and after the development of tree-planting on rooftop changed maximum $0.86^{\circ}C$ and the surface temperature changed about $20^{\circ}C$. Only with lawn planting, heat reduction effect was great and it means that the green roof system in low-management-light-weight type is enough to see effect. The simulation identified that only lawn planting for green rooftop brought such difference and could lower the heat island index at a narrow area. It is judged that application of green roof system to wider areas might relieve urban heat island phenomenon positively.

  • PDF

A Comparative Study on Carbon Storage and Physicochemical Properties of Vegetation Soil for Extensive Green Rooftop Used in Korea (국내 저관리 경량형 옥상녹화용 식생기반재의 이화학적 특성 및 탄소고정량 비교 분석)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Jang, Seong-Wan;Lee, Hang-Goo;Park, Hwan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.115-125
    • /
    • 2015
  • This study was carried out to analyze comparison of carbon storage and physicochemical properties of vegetation soil for extensive green rooftop established at Seoul National University in september 2013. For this study, 42 plots were made by 2 kinds of vegetation soil including A-type and B-type. A-type vegetation soil plots were made of 90% perlite and 10% humus and B-type vegetation soil plots were made of 60% perlite, 20% vermiculite, 10% coco peat and 10% humus. This study used 6 kinds of plants which are Aster koraiensis, Sedum takesimense, Zoysia japonica Steud, Euonymus japonica, Rhododendron indicum SWEET and Ligustrum obtusifolium. Field research was carried out in 11 months after planting. Physiochemical properties of B-type vegetation soil plots were better than A-type vegetation soil plots in every way and soil carbon content was also higher at B-type vegetation soil plots as well. B-type vegetation soil plots were maintained 10 to 20% higher soil water content than A-type vegetation soil plots of the study period. The species of herb which showed the best carbon storage was Zoysia japonica Steud at B-type vegetation soil plots. The species of shrub which showed the best carbon storage was Ligustrum obtusifolium at B-type vegetation soil plots. Plants generally showed better growth at B-type vegetation soil plots and B-type vegetation soil plots were higher than A-type vegetation soil plots in soil carbon stock.

A Study on Configuration of Small Wind Turbines for Maximum Capacity of Wind Power Systems Interconnected With a Building (빌딩 내 최대 풍력발전설비 연계를 위한 소형풍력발전원 구성에 관한 연구)

  • Lee, Yeo-Jin;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.605-612
    • /
    • 2017
  • One of the biggest environmental issues that our world has been facing is climate change. In order to cope with such environmental issues, the world is putting a great deal of effort into energy conservation. The building sector, in particular, consumes 36% of the energy consumed worldwide and emits considerable amount of greenhouse gases. Therefore, introduction of renewable energies in the building sector is highly recommended. Renewable energy sources that can be utilized in the building sector include sunlight, solar heat, geothermal heat, fuel cells and wind power. The wind power generation system which converts wind energy into electrical energy has advantages in that wind is an unlimited and pollution-free resource. It is suitable to be connected to existing buildings because many years of operational experience and the enhanced stability of the system have made it possible to downsize the electrical generator. In case of existing buildings, it is necessary to consider the live loads of the buildings to connect the wind power generation system. This paper, through the connection of the wind power generation with existing buildings, promotes reduction of greenhouse gas emissions and energy independence by reducing energy consumption in the building sector. In order to connect the wind power generation system with an exciting building, the live load of the building and the area of the rooftop should be considered. The installable model is selected by comparing the live load of the building and the load of the wind power generation system. The maximum number of the wind turbines that can be installed is obtained by considering the separation distance between the wind turbines within the area of the rooftop. Installations are divided into single installations and multiple installations of two different types of wind turbines. After determining the maximum installable number, the optimal model that can achieve the maximum annual power generation will be selected by comparing the respective total annual amount of the power generation of different models.

A study on the choice of the best method of construction for building insulation and waterproof (건축물의 단열방수의 최적 공법및 구법 선정 방법론에 관한 연구)

  • Lee, Sung-Goo;Park, Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.654-658
    • /
    • 2006
  • To solve some problems that reveals in the exiting stickiness problem of the housetop, the housetop finishing impact layer can be displaced by the existing concrete block. By doing in this way, this need is rising that the excess cost should be reduced and the materials should be recycled in repairing. According to the above, this study is going to suggest the basic data on building and using of the dry process method by estimating and analyzing a overall determinate quantity through the experiment on the insulation performance among the capacity items on the outside insulation waterproof dry process suggested. In addition, choosing the building method according to the use, the peculiar property and the importance of the building can be possible by analyzing the defect causes happening in the rooftop insulation and waterproof, suggesting the better method and classifying the most proper choosing methods for the need of the building according to the importance of the main factors.

  • PDF

The Simulation of Runoff Reduction by the Storage Type of Zermeable Concrete Block Paving on Andong Maskdance Festival Square (저류형 투수블록 설치를 통한 안동국제탈춤광장 유출량 저감효과 모의)

  • Park, Sung Ki;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.293-300
    • /
    • 2018
  • Ihe purpose of this study is to evaluate the effects the storage type of permeable concrete block paving (ST-PCBP) have on runoff reduction and infiltration increasement at Andong Maskdance Festival Square. This was accomplished using the NRCS-curve number method over the last 10 years. Two different scenarios were developed in this study for low impact development (LID) design. For the $1^{st}$ scenario, the walking path and parking lot were install using the ST-PCBP and runoff from the inline skating rink ($3,808m^2$) and lawn ($11,191m^2$) were routed to the ST-PCBP, but the rooftop runoff flowed into the storm water drainage system. For the $2^{nd}$ scenario, one of the non-structural BMPs, disconnected impervious surface (DIS), was applied so additional runoff from rooftop would enter the ST-PCBP. It was determined that ST-PCBP could significantly reduce surface runoff from the study area and increase infiltration with 71% and 88% of surface runoff reduction and 151% and 215% of infiltration increasement for scenarios 1 and 2, respectively. The effect of LID in the $2^{nd}$ scenario was better than the $1^{st}$ scenario, therefore DIS in conjunction with ST-PCBP could be a more cost-effective LID application.