• Title/Summary/Keyword: rolling element

Search Result 476, Processing Time 0.021 seconds

caliber Design in Shape Rolling by Finite Element Method (유한요소법을 이용한 형상 압연 공정의 공형 설계)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.44-47
    • /
    • 2000
  • In industrial practice caliber design in shape rolling depends on the designer's experience which in general is obtained through costly trial-and error process. Demonstrated in this paper is an application of the finite element method to the determination of optimal caliber shapes in shape rolling of LM-Guide.

  • PDF

Development of the Profile Ring Rolling Process for Large Slewing Rings of Alloy Steels (합금강 대형 선회링의 형상환상압연공정 개발)

  • Kim K. H.;Suk H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.06a
    • /
    • pp.89-94
    • /
    • 2004
  • Profile ring rolling process for large slewing rings of alley steels are developed. A profile ring with a round groove located asymmetrically on the outer surface is rolled. The process is simulated by the finite element method. The general-purpose commercial finite element analysis software, MSC.Superform, was used. Experiments are carried in the ring rolling machine and compared with the analysis.

  • PDF

A Study on Eulerian Finite Element Analysis for the Steady State Rolling Process (정상상태 압연공정의 유한요소 해석에 관한 연구)

  • Lee Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.184-196
    • /
    • 2004
  • An Eulerian finite element analysis for the steady state rolling process is addressed. This analysis combines the crystal plasticity theory fur texture development as well as the continuum damage mechanics for growth of micro voids. Although an Eulerian analysis for steady state rolling has many advantages, it needs an initial assumption about the shape of control volume. However, the assumed control volume does not match the final shapes. To effectively predict the correct shape in an assumed control volume, a free surface correction algorithm and a streamline technique are introduced. Applications to plate rolling, clad rolling, and shape rolling will be given and the results will be discussed in detail.

  • PDF

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Collision-induced Derailment Analysis of a Finite Element Model of Rolling Stock Applying Rolling Contacts for Wheel-rail Interaction (차륜-레일 구름접촉을 적용한 철도차량 유한요소 모델의 충돌 기인 탈선거동 해석)

  • Lee, Junho;Koo, Jeongseo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-14
    • /
    • 2013
  • In this paper, a finite element analysis technique of rolling stock models for collision-induced derailments was suggested using rolling contacts for wheel-rail interaction. The collision-induced derailments of rolling stock can be categorized into two patterns of wheel-climb and wheel-lift according to the friction direction between wheel flange and rail. The wheel-climb derailment types are classified as Climb-up, Climb/roll-over and Roll-over-C types, and the wheel-lift derailment types as Slip-up, Slip/roll-over and Roll-over-L types. To verify the rolling contact simulations for wheel-rail interaction, dynamic simulations of a single wheelset using Recurdyn of Functionbay and Ls-Dyna of LSTC were performed and compared for the 6-typical derailments. The collision-induced derailment simulation of the finite element model of KHST (Korean High Speed Train) was conducted and verified using the theoretical predictions of a simplified wheel-set model proposed for each derailment type.

Finite Element Analysis of Manufacturing Process of a 12 Point Flange Head Bolt with Emphasis on Thread Rolling Process (나사전조공정을 중시한 12각플랜지볼트의 나사제조공정의 유한요소해석)

  • Jang, S.J.;Lee, M.C.;Shim, S.H.;Son, Y.H.;Yoon, D.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.248-252
    • /
    • 2010
  • In this paper, three-dimensional finite element analysis of thread rolling process of a 12 point flange head bolt is conducted using a rigid-plastic finite element method based metal forming simulator AFDEX 3D. A whole sequence of cold forming processes of a long shaft bolt composed of four forging stages and final thread rolling process is simulated to reveal the mechanism of thread formation. A mesh density control function is applied near the major plastic deformation region to achieve computational efficiency. It has been shown both numerically and experimentally that longitudinal lengthening or shortening is negligible in thread rolling.

Dynamic analysis of a beam subjected to an eccentric rolling disk

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.455-470
    • /
    • 2013
  • This paper presents a theory concerning the beam element subjected to an eccentric rolling disk (or simply called the eccentric-disk-loaded beam element) such that the dynamic responses of a beam subjected to an eccentric rolling disk with its inertia force, Coriolis force and centrifugal force considered can be easily determined. To this end, the property matrices of an eccentric-disk-loaded beam element are firstly derived by means of the Lagrange's equations. Then, the overall property matrices of the entire vibrating system are determined by directly adding the property matrices of the eccentric-disk-loaded beam element to the overall ones of the entire beam itself. Finally, the Newmark direct integration method is used to solve the equations of motion for the dynamic responses of a beam subjected to an eccentric rolling disk. Some factors relating to the title problem, such as the eccentricity, radius and rotating speed of the rolling disk, and the Coriolis force and centrifugal force induced by the rolling disk are investigated. Numerical results reveal that the influence of last factors on the dynamic responses of the pinned-pinned beam is significant except the centrifugal force.

Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings (볼 베어링의 구름 요소 주위 유동 특성에 대한 해석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.

The Analysis of Rail Rolling by Finite Element Method (유한요소법에 의한 레일의 압연공정 해석)

  • 구병춘;윤용석
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.391-397
    • /
    • 1999
  • Rails are produced by several rolling processes. These processes play an important role on the performance of rails. We analysed the rolling processes by finite element code, DEFORM. The distributions of temperatures and effective strains are obtained. After the rolling processes, the rails are sent to the cooling bed. During the cooling, the rails are bended and twisted. These bending and twisting should be minimized to produce a high quality rail. The analyses of cooling processes and residual stresses produced through the rolling processes will be Presented in the next paper.

  • PDF