• Title/Summary/Keyword: rolling element

Search Result 476, Processing Time 0.028 seconds

Analysis of Rolling Contact Surface on PM-High Speed Steel by X-ray Diffraction (구름접촉을 하는 분말고속도공구강의 X선을 이용한 표면성상해석)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior performance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PH-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on super-saturated carbon in PM-HSS.

The Optimization of Shape Control in High Reduction Rolling in Minimill Process (미니밀에서의 고압하율과 형상변화 최적화 방안에 관한 연구)

  • Choi B. W.;Kim T. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.117-120
    • /
    • 2001
  • In hot roiling process, new rolling mills have been apapted to strip rolling but we can usually experience the problem of snaking of strip. This phenomenon was arisen by nonsymmetric rolling and on-centering and cambering of a strip and other mill conditions. Three dimensional analysis for strip rolling predicted the influence of nonsymmetric rolling, off-centering and pair crossing system This study evaluated the fundamental characteristics of snaking of a strip to optimize the operating condition for trouble free rolling.

  • PDF

Evolution of shear texture during hot rolling of AA1050 aluminum sheet. (AA1050 알루미늄 합금의 열간 압연 시 전단집합조직의 형성)

  • Hang, G.C.;Kim, H.C.;Huh, M.Y.;Lee, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.222-225
    • /
    • 2006
  • The effect of lubrication on the development of textures and Microstructure was studied by different lubricating condition during hot rolling of AA1050 aluminum alloy. Hot rolling without lubrication led to the evolution of the pronounced through-thickness texture gradients, whereas hot rolling with lubrication gave rise to the formation of uniform rolling texture in the whole thickness layer. The variation of texture and microstructure according to hot rolling condition are investigated by X-ray diffractometer (XRD) and Electron Back-Scattered Diffraction (EBSD). The experimental results were discussed base on the finite element method (FEM) simulation. FEM calculation reveals that a larger friction between roll and sheet causes the deviated strain state from a plane strain leading to the formation of shear textures in the thickness layers close to the surface.

  • PDF

EHL Analysis of Rolling Bearings Considering the Effect of the Number of Rolling Elements and the Shaft Load

  • Hong, Sung-Ho;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.17-22
    • /
    • 2009
  • The numerical analysis of elastohydrodynamic lubrication for the ball and roller bearings is performed in order to study the effect of the number of rolling elements and the shaft load on the minimum film thickness. A finite difference method and the Newton-Raphson method are used in the analysis. For a given shaft load, the maximum load of rolling element is determined along with the number of rolling elements. And then the minimum film thickness is calculated for several rolling bearings. The shape of film thickness and the pressure distribution are also studied.

Three Dimensional Simulation of Edge-Plate Rolling Process Using Rigid Plastic Finite Element Method (강소성 유한요소법을 이용한 에지-평압연 공정의 삼차원 해석)

  • 이동재;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.244-248
    • /
    • 1997
  • In the rolling process, keeping the accuracy of the slab width is a very important problem. So the edge rolling is used with the plate rolling. But in the edge rolling, a local contraction of width, called "width necking", occurs in the top and tail portion of a slab and becomes the cause of crop loss. In this investigation, the three dimensional deformation behavior in the edge-plate rolling is simulated by rigid plastic FEM(PROLL). And the influence of the rolling condition on "width necking" and the accuracy of width is examined.

  • PDF

The Influences of Front and Back Tensions on The Development of Rolling Textures in IF Steel (IF강의 페라이트역 압연시 전.후방 인장이 집합조직에 미치는 영향)

  • 신형준;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.349-355
    • /
    • 1999
  • The texture inhomogeniety during rolling is one of the greatest problems. Especially, shear texture develops more easily during ferritic rolling of steel sheets at high temperatures due to friction between rolls and the material. In this study, the influence of front and back tensions on the texture development during ferritic rolling has been studied. The rolling textures were simulated using the full constrains Taylor-Bishiop-Hill model with the strain history obtained from finite element analysis. The calculated textures showed that the back tension rolling could reduce the shear component more effectively than front tension or rolling without tension. However, the experimental results showed that the lension effect was very small compared to our prediction. It might be attributed to initial texture and difference in frictions between simulation and experiments.

  • PDF

Development of the hot ring rolling processes for multilayered ring parts with a large outer diameter (외경이 큰 환형 부품의 다중형상 열간 링 롤링 공정의 개발)

  • Kim, Kyung-Ryool;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.952-962
    • /
    • 2015
  • In this study, multilayered rings with a large outer diameter have been developed using a hot ring rolling process. The ring rolling process has been analyzed by rigid plastic finite element analyses (FEA) using the AFDEX2D and AFDEX3D/HEXA/RING simulators, where the finite element meshes received severe plastic deformation are remeshed into a fine mesh-size using a dual-mesh system. According to the simulated results, the design variables of the multilayered rings were determined and real tests were conducted to check the validity of the simulation results. By adopting the hot ring rolling process, the input weight of raw materials was reduced by 40% against the conventional hot forging process and that the recovery rate was increased by 24%. The measurement of the averaged roundness was satisfied within 0.5 mm for both the inner and outer diameters. Moreover, the hot ring rolling processes yielded 1.49 Cpk for the outer-diameter and 0.84 Cpk 0.84 for the inner-diameter.

Study of the Effect of Loading Path on the Strain and Mechanical Properties of Aluminum with Flat and Groove Rolling Experiment (순수 알루미늄의 판재압연 및 공형압연시 가공경로에 따른 변형분포와 기계적 성질의 예측)

  • Kim, S.I.;Byon, S.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.420-428
    • /
    • 2008
  • The effect of loading path changes on the strain and mechanical properties of a commercial pure aluminum was studied using flat rolling and groove rolling. Material during flat rolling undergoes a continuous monotonic compressive loading, while one during groove rolling experiences a series of cross compressive loading. Four-pass flat rolling and groove rolling experiment are designed such that the aluminum undergoes the same amount of the strain at each pass. The rolling experiment was performed at room temperatures. Specimens for tensile test are fabricated from the plate and bar rolled. In addition, the strain distribution for the plate and bar cold rolled specimens is also calculated by finite element method. The results reveal that differences of loading path attributed by monotonic loading(flat rolling) and cross loading(groove rolling) significantly influence the mechanical properties such as yield stress, ultimate tensile stress, strain hardening and elongation. It is clear that the different loading path can give raise to change the deformation history, although it is deformed with same amount of strain for same material.

Effect of Deformation Parameters on The Evolution of Strain State During Asymmetrical Rolling in Aluminum Sheet (알루미늄 판재의 비대칭 압연 시 변형률 상태에 미치는 압연 변수의 영향)

  • Kang H. G.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.460-462
    • /
    • 2005
  • Asymmetrical rolling was performed with different working roll speeds of upper and lower rolls. In order to promote the shear deformation during asymmetrical rolling, various deformation parameters of initial sheet thickness, rolling reduction, roll speed ratio and roll radius are considered. The evolution of texture during asymmetrical rolling was shown by the calculation of orientation distribution function (ODF). The effect of deformation parameters on shea. deformation were investigated by simulations with the finite element method (FEM). Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the sheet.

  • PDF

Analysis of Rolling Contact fatigue for PM-High Speed Steel by X-ray Diffraction (X선회절에 의한 분말 고속도공구강의 구름접촉피로 해석)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.44-49
    • /
    • 2000
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior peformance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PM-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on supersaturated carbon in PM-HSS.

  • PDF