• Title/Summary/Keyword: roll control system

Search Result 387, Processing Time 0.044 seconds

New Approach to Pressure Control of a Impression Cylinder for Roll Coater (인쇄성능 향상을 위한 롤코터용 임프레션 실린더의 압력 제어)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • This study presents a new approach to pressure control of a impression cylinder for roll coater which is a kind of face pressure control between blanket roll and impression roll. Roll-to-Roll method for printing is a very useful tool for mass production such as RFID elements, smart sensors and solar cell devices. In this study, a decupling control strategy of the roll coater which is a combination of a cylinder system, a dry system and two pressure regulators with two pneumatic cylinders was discussed. Also, the characteristics of component such as a pressure regulator having a pressure reducing function and the movement of a blanket roll and a impression cylinder were analyzed using the Matlab software. From this results, the techniques of a shock and a vibration reduction were suggested.

  • PDF

A Study on Rudder-Roll Stabilization System Design for Ship (방향타를 이용한 선박 횡동요 제어계 설계에 관한 연구)

  • Kim, Yeong-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.329-339
    • /
    • 2002
  • In ship operation the consequency of roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization control system design have been performed and very good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used to exclusively to stabilize the roll. This paper examines the two-degree-of-freedom servosystem design technique to synthesize the yaw control system which achieves the course keeping object of the ship and the H$_{\infty}$ control approach to suppress the roll motion, respectively.

Precision Shape Control in Plate Rolling (후판압연에서의 고정도 형상제어기술)

  • 서재형;정병완;홍헌호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.452-456
    • /
    • 1999
  • Newly constructed plate shape control system, using attached shape measuring instruments and work roll bender, was put in service in No. 2 Plate Mill, POSCO. Recently, customers demand the improvement of flatness and plate crown accuracy. Many competition Plate Mill introducted shape control system, for example, pair cross mill, work roll bender which includes shape measuring instrument and shape control mathematical models, and No. 2 Plate Mill, POSCO introducted work roll bender and shape measuring instruments. This report describes the properties of No. 2 Plate Mill shape control system and work roll bender.

  • PDF

Estimation Algorithm of Vehicle Roll Angle and Control Strategy of Roll Mitigation Force Distribution (차량 롤 각 추정 알고리즘 및 롤 저감력 분배 제어 전략)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • The ROM (roll over mitigation) system is a next-generation suspension system that can improve vehicle-driving stability and ride comfort. Currently, mass-produced safety systems, such as ESC (electronic stability control) and ECS (electronic control suspension), enable measurements of longitudinal and lateral acceleration as well as yaw rate through inertial sensor clusters, but they lack direct measurements of the roll angle. Therefore, in this paper, a roll angle estimation algorithm from ESC system sensors and tire normal force has been proposed. Furthermore, this study presents a method for roll over mitigation force distribution between the front and rear of a ROM system. Performance and reliability of the roll angle estimation and roll over mitigation force distribution were investigated through simulations. The simulation results showed that the proposed control algorithm and strategy are reliable during vehicle rollovers.

Variable PID Gain Control of Winder Tension of Roll-to-Roll Printing System using Estimation of Winder-Roll Radius (롤투롤 시스템의 와인더 반경 추정을 이용한 와인더 장력의 가변 PID이득 제어)

  • Park, Jong-Chan;Jeon, Sung Woong;Nam, Ki Sang;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.755-760
    • /
    • 2013
  • The dynamics of the winder roller of a roll-to-roll printing system for printed electronics is a time-varying system because of the variation of the winder roller radius owing to rewinding or unwinding of the web. Therefore, an adaptive control method considering the time-variant characteristics is required for precise tension control. In this study, the variable PID gain method is applied to the actual roll-to-roll system and verified by experiments for unwinder tension control. The required value of the winder roller radius for the application of the variable PID gain is estimated from the measurement of the winder tension and winder motor torque. The simulation results as well as experimental results show that the fixed PID gain control cannot stabilize the tension of the winder roller with varying winder roller radius. On the other hand, the variable PID gain method can control the tension of the winder roller regardless of the winder roller radius.

Development of On -Line Work Roll Surface Monitoring System At Hot Strip Mill

  • Moon, Bae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.4-53
    • /
    • 2001
  • This paper described about the system which can be inspect work roll surface for deciding a milling schedule and roll changing at hot strip mill in POSCO. Developed system consists of CCD camera, Xenon lamp with fiber bundle and mechanical control part. The water probe build up water pole between head of probe and roll surface to acquisite a good image from a work roll surface under the bad environment with steam, cooling water and high temperature. This system is possible to monitor a work roll surface of about 12${\times}$9mm. We have shown the validation of the developed system which can monitor the evolution of degradation on work roll surface.

  • PDF

A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed (선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구)

  • Kim, Young-Bok;Chea, Gyu-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

Modeling and adaptive optimal control of a twin roll strip caster (쌍롤형 박판주조기의 모델링과 적응최적제어)

  • 김성훈;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.325-328
    • /
    • 1997
  • In this paper the modeling and control of a twin roll strip caster is investigated. Mathematical models for the strip casting process are obtained by analyzing five critical areas such that the molten steel level in the pool, solidification process, roll separating force and torque, roll dynamics including hydraulic actuators, and roll drive system. A two-level control strategy is proposed. At lower level, three local subsystems are independently feedback-controlled by suitable local controllers which perform well to the behaviors of each subsystem. They are a variable structure control of the molten steel level in the pool, an adaptive predictive control of the roll gap which is directly related to the strip thickness, and an $H^{\infty}$ control of the roll drive system. At higher level, all reference signals to the lower level subsystems are generated by an optimal controller in the perspective of regulating the strip thickness and roll separating force. Simulations are provided..

  • PDF

AN ESTIMATION OF THE ROLL CONTROL EFFECTIVENESS OF THE ROLL VANES OF A LAUNCH VEHICLE USING CFD AND DESIGN OF AN ACTUATION SYSTEM (CFD에 의한 발사체 롤 베인 제어 효율성 예측 및 구동 시스템 설계)

  • Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.87-91
    • /
    • 2005
  • A conceptual design for the movable roll vane system is done for the roll stability control of KSLV-I. The control effectiveness of the roll vanes is estimated using the numerical simulation. The hinge location is selected to minimize the torque requirement at the maximum dynamic pressure condition, and the maximum torque of 3.0 kN-m is found to be required to actuate the roll vanes for the entire range of operation. An electro-mechanical actuator system which is composed of a DC motor, the speed reducers, the battery package and the controller is designed using the given requirements, the maximum torque of 3.0 kN-m, the maximum deflection angle of 25 deg. and the maximum angular velocity of 30 deg/sec. More detailed design to make more compact and highly efficient system will be done in the future.

  • PDF