• 제목/요약/키워드: roll casting

검색결과 94건 처리시간 0.024초

연주 ROLL 육성부의 기계적 성질에 미치는 Nb, V의 영향 (Effects of Nb, V on the Mechanical Properties of Continuous Casting Rolls Overlaidhang)

  • 김창규;윤재홍;황동수
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.70-76
    • /
    • 2004
  • In the steel marking industry, most companies have adapted the continuous casting process, due to its economical benefit. Casting rolls are utilized for frictional drive and the transport of solidifying slap. Dimensional tolerances, mechanical stability, and surface condition of the casting rolls can affect both the surface and the internal quality of the product being cast. To overcome these problems, the industry now is focused on accelerating the rate of technological improvements. This study has been undertaken for the development of casting rolls overlaid materials (SAW FCW wire), with the addition of Vanadium and Molybdenum to the martensitic stainless steel, in order to increase tensile strength and hardness at elevated temperatures.

전열응고해석법을 이용한 마그네슘합금의 열전달계수 및 롤의 온도변화 측정 (Measurement of Heat Transfer Coefficient of Magnesium Alloy and Temperature Change of Roll using Heat Transfer Solidification Analysis Method)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제32권9호
    • /
    • pp.391-395
    • /
    • 2022
  • Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.

연속 주편의 응고와 벌징해석에 관한 연구 (Study for Solidification and Bulging of the Continuous Casting Slab)

  • 조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.30-34
    • /
    • 2000
  • In this paper we analyzed bulging condition which affect the quality of continuous casting steel by using the numerical analytic method. First solidification analyses are performed for each cooling zones. Solidification analysis are carried out by one-dimensuional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed cooling condition roll pitch are examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

수치해석을 이용한 연주 주편의 역학적 거동 해석 (A Study for the Mechanical Behavior of the Continuous Casting Slab Using Numerical Analysis)

  • 하종수;조종래;이부윤;하만영
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.122-128
    • /
    • 2000
  • In this paper, a bulging condition which affect the quality of continuous casting steel was analyzed by using the numerical analytic method. First, solidification analyses were performed for each cooling zone by one-dimensional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed, cooling condition and roll pitch were examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

Fe-Cr-Al 합금의 급속응고가 고온산화거동에 미치는 영향 (The Effect of Rapid Solidification Process on the Oxidation Behavior of Fe-Cr-Al Alloys at Elevated Temperature)

  • 문병기;김재철;김길무
    • 한국표면공학회지
    • /
    • 제29권1호
    • /
    • pp.36-44
    • /
    • 1996
  • Fe-Cr-Al and Fe-Cr-Al-Hf alloys prepared either by arc melting or by single roll casting(melt spinning) were exposed to air isothermally at 900~$1100^{\circ}C$. Whisker-like alumina was observed on the surface of the specimens when oxidized at $900^{\circ}C$, but convoluted alumina above $1000^{\circ}C$. All the Hf-free specimens and Hf-added specimens produced by single roll casting formed only external scale mainly composed of $Al_2O_3$ after oxidation at 900~$1100^{\circ}C$ for 100 hours, but Hf-added specimen produced by arc melting formed Hf-rich internal oxides below the thin external $Al_2O_3$ scale except at $900^{\circ}C$. Most of the rapidly solidified Fe-Cr-Al alloys showed smaller weight gains than conventionally casted ones besides Hf-added one oxidized at $1100^{\circ}C$.

  • PDF

브레이징용 Ag-27%Cu-25%Zn-3%Sn 박판 주조 스트립의 미세조직 및 기계적 특성 연구 (Microstructure and Mechanical Properties of Strip Casted Ag-27%Cu-25%Zn-3%Sn Brazing Alloy)

  • 김성준;김문철;이기안
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.313-316
    • /
    • 2008
  • This work sought to examine the suitability of twin roll strip casting for Ag-27%Cu-25%Zn-3%Sn brazing alloy (BAg-7A) and to investigate the mechanical properties and microstructure of the strip. The effect of aging heat treatment on the properties was also studied,. This new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analysis of the Ag-27%Cu-25%Zn-3%Sn strip represented eutectic microstructure of a Cu-rich phase and a Ag-rich matrix regardless of heat treatment. The results of mechanical tests showed tensile strength of 470MPa, a significant enhancement, and an 18% elongation of the twin roll casted strip, due mainly to the solid solution strengthening of Zn atoms (${\sim}20%$) in the Cu-rich phases. Tensile results showed gradually decreasing strengths and increasing elongation with aging heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.

  • PDF

고진공 다이캐스팅 공법 적용한 알루미늄 서브프레임 개발 (Front Aluminum Subframe of High Level Vacuum Die-casting)

  • 조영건;임태성;장상길;조철한
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.52-59
    • /
    • 2012
  • The subframe has been generally manufactured by using stamped steel material. Recently, automotive designers are considering aluminum as lightweight material. This paper describes the development process of an aluminum subframe which is made by high level vacuum die casting process, which is beneficial for minimizing gas contents and material properties. The weight of manufactured subframe is reduced by 4kg with the comparison of steel subframe. The aluminum subframe is packaged for the current vehicle layout and the imposed requirement is to attain a better structural performance that is evaluated in terms of mounting stiffness, noise and vibration, and endurance performance. The NVH evaluation results show that sound level is decreased by 8dB with the help of high roll-rod mounting stiffness as well as high structural modes.

쌍롤법에 의한 Al-Sn합금 Strip의 제조 및 특성에 관한 연구 (A Stud on the Fabrication and Characteristics of Al-Sn Alloy Strips by Twin-Roll Process)

  • 이정근;주대헌;김명호
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.174-183
    • /
    • 2002
  • Twin-roll process is a relatively new continuous casting process which can produce high-quality strip products directly, and solidification rate can reach $10^3$ to $10^4$ K/s, leading to fine and uniform microstructures with enhanced mechanical properties. The strip casting condition for producing fine Al-Sn alloy strip was obtained experimentally, and defects appearing on the strip was examined. Crack formation and surface quality of the strip was found to depend mainly on process parameters such as melt temperature, roller gap and rolling speed. Sn structure of network type was observed in Al-20Sn and Al-40Sn alloy strips, and cell spacing of Al-40Sn alloy was smaller than that of Al-20Sn. Banding strength of the heat treated specimens increased with increasing of soaking time and temperature, and bonding strength of Al-20Sn alloy was more superior than that of Al-40Sn alloy. However wear resistance of Al-40Sn alloy contained large amount of soft Sn which possess good anti-friction characteristics was superior than that of Al-20Sn alloy.

7175Al 링롤단조재의 미세조직과 기계적 성질에 미치는 공정조건의 영향 (Effect of Process Conditions on the Microstructure and Mechanical Properties of 7175Al Ring Roll Forgings)

  • 이인기;강락경;이오연
    • 열처리공학회지
    • /
    • 제17권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The aim of this study is to investigate the process conditions on the microstructual changes and mechanical properties of large 7175 aluminum ring roll forgings. The billets range from 370 mm to 720 mm in diameter were homogenized and ring roll forged after direct chill casting. The tensile properties of ring roll forged specimen manufactured with ${\Phi}370mm$ billets were superior to those of ${\Phi}720mm$ billets under $T_6$ condition. Also, these properties showed better than those of military specification under $T_{74}$ treatment. The impact value of ring roll forged specimen under $T_{74}$ treatment increased up to 20% than that of $T_6$ condition. The fracture toughness of ring roll forged specimen manufactured with ${\Phi}370mm$ cast billet showed nearly same level of ${\Phi}720mm$ billet which was processed using MF or Cog free forging followed by ring roll forging.

성형벨트를 부착시킨 장비를 이용하여 용융드래그방법으로 제작한 마그네슘 합금의 제작조건 확립 (Establishment of Manufacturing Conditions for Magnesium Alloys by the Melt Drag Method using Equipment with a Forming Belt)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권10호
    • /
    • pp.576-581
    • /
    • 2021
  • To improve the shortcomings and expand the advantages of the single-roll melt drag method, which is a type of continuous strip casting method, the melt drag method with a molding belt is applied to AZ31 magnesium alloy. By attaching the forming belt to the melt drag method, the cooling condition of the thin plate is improved, making it possible to manufacture thin plates even at high roll speed of 100 m/min or more. In addition, it is very effective for continuous production of thin plates to suppress oxidation of the molten metal on the roll contact surface by selecting the protective gas. As a result of investigating the relationship between the contact time between the molten metal and the roll and the thickness of the sheet, it is possible to estimate the thickness of the sheet from the experimental conditions. The relationship between the thin plate thickness and the grain size is one in which the thinner the thin plate is, the faster the cooling rate of the thin plate is, resulting in finer grain size. The contact state between the molten metal and the roll greatly affects the grain size, and the minimum average grain size is 72 ㎛. The thin plate produced using this experimental equipment can be rolled, and the rolled sample has no large cracks. The tensile test results show a tensile strength of 303 MPa.