• 제목/요약/키워드: role overload

검색결과 153건 처리시간 0.018초

시맨틱 웹 기술혁신의 채택과 확산: 질적연구접근법 (The Adoption and Diffusion of Semantic Web Technology Innovation: Qualitative Research Approach)

  • 주재훈
    • Asia pacific journal of information systems
    • /
    • 제19권1호
    • /
    • pp.33-62
    • /
    • 2009
  • Internet computing is a disruptive IT innovation. Semantic Web can be considered as an IT innovation because the Semantic Web technology possesses the potential to reduce information overload and enable semantic integration, using capabilities such as semantics and machine-processability. How should organizations adopt the Semantic Web? What factors affect the adoption and diffusion of Semantic Web innovation? Most studies on adoption and diffusion of innovation use empirical analysis as a quantitative research methodology in the post-implementation stage. There is criticism that the positivist requiring theoretical rigor can sacrifice relevance to practice. Rapid advances in technology require studies relevant to practice. In particular, it is realistically impossible to conduct quantitative approach for factors affecting adoption of the Semantic Web because the Semantic Web is in its infancy. However, in an early stage of introduction of the Semantic Web, it is necessary to give a model and some guidelines and for adoption and diffusion of the technology innovation to practitioners and researchers. Thus, the purpose of this study is to present a model of adoption and diffusion of the Semantic Web and to offer propositions as guidelines for successful adoption through a qualitative research method including multiple case studies and in-depth interviews. The researcher conducted interviews with 15 people based on face-to face and 2 interviews by telephone and e-mail to collect data to saturate the categories. Nine interviews including 2 telephone interviews were from nine user organizations adopting the technology innovation and the others were from three supply organizations. Semi-structured interviews were used to collect data. The interviews were recorded on digital voice recorder memory and subsequently transcribed verbatim. 196 pages of transcripts were obtained from about 12 hours interviews. Triangulation of evidence was achieved by examining each organization website and various documents, such as brochures and white papers. The researcher read the transcripts several times and underlined core words, phrases, or sentences. Then, data analysis used the procedure of open coding, in which the researcher forms initial categories of information about the phenomenon being studied by segmenting information. QSR NVivo version 8.0 was used to categorize sentences including similar concepts. 47 categories derived from interview data were grouped into 21 categories from which six factors were named. Five factors affecting adoption of the Semantic Web were identified. The first factor is demand pull including requirements for improving search and integration services of the existing systems and for creating new services. Second, environmental conduciveness, reference models, uncertainty, technology maturity, potential business value, government sponsorship programs, promising prospects for technology demand, complexity and trialability affect the adoption of the Semantic Web from the perspective of technology push. Third, absorptive capacity is an important role of the adoption. Fourth, suppler's competence includes communication with and training for users, and absorptive capacity of supply organization. Fifth, over-expectance which results in the gap between user's expectation level and perceived benefits has a negative impact on the adoption of the Semantic Web. Finally, the factor including critical mass of ontology, budget. visible effects is identified as a determinant affecting routinization and infusion. The researcher suggested a model of adoption and diffusion of the Semantic Web, representing relationships between six factors and adoption/diffusion as dependent variables. Six propositions are derived from the adoption/diffusion model to offer some guidelines to practitioners and a research model to further studies. Proposition 1 : Demand pull has an influence on the adoption of the Semantic Web. Proposition 1-1 : The stronger the degree of requirements for improving existing services, the more successfully the Semantic Web is adopted. Proposition 1-2 : The stronger the degree of requirements for new services, the more successfully the Semantic Web is adopted. Proposition 2 : Technology push has an influence on the adoption of the Semantic Web. Proposition 2-1 : From the perceptive of user organizations, the technology push forces such as environmental conduciveness, reference models, potential business value, and government sponsorship programs have a positive impact on the adoption of the Semantic Web while uncertainty and lower technology maturity have a negative impact on its adoption. Proposition 2-2 : From the perceptive of suppliers, the technology push forces such as environmental conduciveness, reference models, potential business value, government sponsorship programs, and promising prospects for technology demand have a positive impact on the adoption of the Semantic Web while uncertainty, lower technology maturity, complexity and lower trialability have a negative impact on its adoption. Proposition 3 : The absorptive capacities such as organizational formal support systems, officer's or manager's competency analyzing technology characteristics, their passion or willingness, and top management support are positively associated with successful adoption of the Semantic Web innovation from the perceptive of user organizations. Proposition 4 : Supplier's competence has a positive impact on the absorptive capacities of user organizations and technology push forces. Proposition 5 : The greater the gap of expectation between users and suppliers, the later the Semantic Web is adopted. Proposition 6 : The post-adoption activities such as budget allocation, reaching critical mass, and sharing ontology to offer sustainable services are positively associated with successful routinization and infusion of the Semantic Web innovation from the perceptive of user organizations.

시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법 (A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach)

  • 노상규;박현정;박진수
    • Asia pacific journal of information systems
    • /
    • 제17권4호
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.

자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)

  • 조문기;배경율
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • 오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.