• Title/Summary/Keyword: rod bar

Search Result 79, Processing Time 0.022 seconds

Development of In-Line Trimming Shear (In-Line Trimming Shear 개발)

  • 이종일;강성구;서경수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.119-125
    • /
    • 1999
  • At Wire Rod Mill Plant, wire is made of the billet produced at continuous casting machine, or rolled bloom produced at billeting mill, and the product can be classified of wire of 5.5${\Phi}$ and bar in coil of 14∼42${\Phi}$ in diameter(bar in coil will be referred to as coil as below). At present, wire is produced at POSCO No.1, 2, 3 WRM, coil at garret line of No. 2 WRM. Head and tail of coil are properly cut and treated to scrap to fulfill the customer's satisfaction. This above cutting is done off line, and small size coil can be cut manually with clipper, large size coil with hydraulic cutter. Nowadays, it is being investigated to cut automatically in line with trimming shear after passing mill stand. At the moment, Because the coil produced at the garret line of No.2 WRM is hot 400∼600$^{\circ}C$ and trimming is done manually with cutter, there are always interference from manual operation or safety problem of bad working condition. Not only because of the diversity of the coil size 14∼42${\Phi}$ in diameter, but because of the rolling speed 2.5∼22m/sec, it is required to be equipped with several trimming shear. But this can be accomplished with only one shear installed proper place at this paper.

  • PDF

Finite-Slab element investigation of square-to-round multipass shape rolling

  • 이상매;김낙수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.251-255
    • /
    • 1991
  • The primary objectives of the rolling process are to reduce the cross section of the incoming material while improving its properties and to obtain the desired section at the exit from the rolls. Many engineering metals, suchas aluminium alloys, copper alloys, and steels are often cast intoingots and are then further processed byhot rolling into blooms, slabs, and billets, which are subsequently rolled into other products such as plate, sheet, tube, rod, bar, and structural shapes. In shape rolling a round or square bar is rolled in several passes into various shapes. During eachpass, the bar elongates as well as spreads. Thus, a very complex three-dimensional metal flow takes place. In this paper TASKS results for the simulation of a 7 pass square-to-round shape rolling are presented. The results are verified by comparing it with experimental results from a previous study conducted at the Battelle Columbus Labs

Computational and Experimental Analyses of the Wave Propagation Through a Bar Structure Including Liquid-Solid Interface (액체-고체 경계면이 존재하는 구조물에서의 파동 전파 해석 및 실험)

  • Park, Sangjin;Rhee, Huinam;Yoon, Doo Byung;Park, Jin Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.793-799
    • /
    • 2015
  • In this research, we study the propagation of longitudinal and transverse waves through a metal rod including a liquid layer using computational and experimental analyses. The propagation characteristics of longitudinal and transverse waves obtained by the computational and experimental analyses were consistent with the wave propagation theory for both cases, that is, the homogeneous metal rod and the metal rod including a liquid layer. The fluid-structure interaction modeling technique developed for the computational wave propagation analysis in this research can be applied to the more complex structures including solid-liquid interfaces.

An Experimental Study on the Cooling Effect by a Turbulence Promoter in Impinging Air Jet System (충돌분류계(衝突噴流系)에서 난류촉진체(亂流促進體)에 의한 방열효과(放熱效果)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-56
    • /
    • 1992
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular air jet impinging vertically on the flat heating surface. In an attempt to enhance the heat transfer rate in two-dimensional impinging jet, the technique used in the present study was placement of square rod bundles as a turbluence promoter in front of the heat transfer surface. The effects of the clearance between the flat plate and square rod, and the nozzle exit velocity on the heat transfer characteristics have been investigated experimentally. The results obtained through this study were summerized as follows. High heat transfer enhancement was achived by means of flow acceleration and thinning of boundary layer by inserting rods in front of the heating flat plate. The smaller the clearance between rod and heating plate was, the larger heat transfer effect became. Average Nusselt number reached maximum at $Re=5.76{\times}10^4$ and C=1㎜ and the enhancement rate of heat transfer became maxium at this condition with the enhancement ratio as high as about 1.427 when normalized by the flat plate value. The correlating equation of average Nusselt number and Reynolds number was obtained, which is $\bar{N}uo=1.324{\cdot}Re^{0.459}{\cdot}(C/A)^{-0.034}$.

  • PDF

A Study on the Corner Filling in the Drawing of Quadrangle Rod from Round Bar (원형봉에서 사각재 인발 공정의 코너 채움에 관한 연구)

  • 김용철;김동진;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.143-152
    • /
    • 2000
  • The comer filling in shaped drawing process is an important characteristic, unlike the round drawing. It has also influence on the dimensional accuracy of the product. In this study, therefore, the shaped drawing process has been simulated by the three dimensional rigid-plastic finite element method in order to investigate the effect of process variables such as reduction in area and semi-die angle to the corner filling. The artificial neural network has also been introduced to reduce the number of simulations. To verify the results of simulations, experiments have been performed on the real industrial products. According to the results, the main process variable on the corner filling is the combination of semi-die angle in the irregular shaped drawing processes, but in the case of regular shaped drawing processes, reduction in area has great influence on the corner filling.

  • PDF

Effect of Roll Gap Change of Oval Pass on Interfacial Slip of Workpiece and Roll Pressure in Round-Oval-Round Pass Rolling Sequence

  • Lee, Youngseog;Bayoumi, Laila-Salah;Kim, Hong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.492-500
    • /
    • 2002
  • This paper presents a study of the effect of varying the roll gap of oval pass in round-oval-round pass sequence on the interracial slip of workpiece, entrance and exit velocities, stresses and roll load that the workpiece experiences during rolling, by applying analytical method, finite element simulation and verification through hot bar rolling tests. The results have shown that the roll gap variation of oval pass affects the interfacial slip of workpiece along the groove contact and the specific roll pressure. The optimum conditions in terms of minimum interfacial slip and minimum specific roll pressure, which might influence the maximum groove life, is obtained when the subsequent round pass is completely filled.

Pull-out Behaviors of Headed Bars with Different Details of Head Plates (Head 플레이트 상세에 따른 Headed Bars의 인발거동에 관한 연구)

  • Park, Hyun-Gyoo;Yoon, Young-Soo;Ryoo, Young-Sup;Lee, Man-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents the pull-out failure mode on Headed Bars and prediction of tensile capacity, as governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Test variables are the reinforcing bar diameters connected to headed plate (e.g., 16mm, 19mm and 22mm), the head plate shapes (e.g., circular, square, rectangular), the dimensions of head plates (e.g., area and thickness), the types of welding scheme for connection of reinforcing bars and head plates (e.g., general welding and friction welding). Headed Bars were manufactured in different areas, which shape and thickness are based on ASTM 970-98. Calculation of Embedment length in concrete is based on CSA 23.3-94, and static tensile load was applied. Pullout capacities tested were compared to the values determined using current design methods such as ACI-349 and CCD method. If compare experiment results and existings, Headed bar expressed high strength and bigger breakdown radious than standard by wide plate area and anomaly reinforcing rod unlike anchor.

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • 박훈재;나경환;조남선;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.140-143
    • /
    • 1997
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding, the normal pressure and the contact surface expansion are selected as process parameters governing the bonding condition. The critical pressure required for the bonding at the interface is obtained by solving a "local extrusion" using a slip line meyhod. A viscoplastic finite element method is used to analyze the steady state extrusion process. The boundary profile of bi-metal rod is predicted by tracking a particle path adjacent to interface surface. The variations of contact surface area and the normal pressure along the interface profile are predicted and compared to those by experiments.

  • PDF

Corrosion Resistance of SD460 Reinforcing Rod by Ceramic Coating (SD460 철근의 세라믹 코팅에 의한 내식성 향상연구)

  • Park, Ki Y.;Lee, Jong K.;Hong, Seok W.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.157-161
    • /
    • 2009
  • The corrosion resistance of reinforcing bar was studied to endure the marine environment during shipment. The red rust on the surface did not damage the adherence in the concrete structures, especially in highly alkaline environment, but made the consumer doubt of the quality. The passivation process by alkalization of the quenching water in the tempcore process failed to endure the long shipping period. The ceramic coating by sol-gel process improved the corrosion resistance without damaging the mechanical properties and adherence between concrete and reinfiorcing bar. Optimal concentration of the coating solution and coating temperature were tested. No additional energy was necessary for the coating process by spraying during cooling process, resulting simplified process and low cost. Salt spray test, cyclic corrosion test and atmospheric test were employed to confirm the resistance. The corrosion rates were presented by rating number and polarization resistance. The coating layer was examined by FIB, XRD and SEM etc.

Resistance to Chloride Attack of FRP Hybrid Bar After Freezing and Thawing Action (동결융해 이후의 FRP Hybrid Bar의 부식 저항성)

  • Ryu, Hwa-Sung;Park, Ki-Tae;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • RC(Reinforced Concrete) structures are exposed to various exterior conditions, and the performances of both chloride resistance and freezing/thawing action are evaluated for those exposed to corrosive environment-sea shore. Recently developed FRP Hybrid Bars which is coated with glass fiber and epoxy with core steel has an engineering advantage of higher Elasticity than FRP rod. In this work, corrosion resistance, weight loss, and bond strength are evaluated for the FRP Hybrid Bar tested through freezing/thawing action for 300cycles. The double coated FRP Hybrid Bar shows the least weight loss without defection due to freezing/thawing action. Bond strength in FRP Hybrid Bar increases to 120% of normal steel through torturity effect with Si-coating. Bond strength in normal steel shows 0.86~0.89times in 3-day corrosion acceleration and 0.35~0.38times in 5-day corrosion acceleration, however, that in FRP Hybrid Bar shows little changes in bond strength before and after freezing/thawing action.