• Title/Summary/Keyword: rockfall monitoring

Search Result 8, Processing Time 0.019 seconds

A Study on the Improvement of the Management System of Rockfall Risk Area Using the Rockfall Analysis Program (낙석 해석 프로그램을 이용한 낙석위험지역 관리체계 개선 방안에 대한 연구)

  • Bae Dong Kang;Jae Chae Jeong;Chang Deok Jang;Kye Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.79-86
    • /
    • 2022
  • The National Park Service is making efforts to create a safe environment by installing rockfall prevention facilities (rockfall prevention nets, fences, and Piam tunnels) in areas at risk of falling rocks. However, the occurrence of falling rocks is increasing every year due to torrential rains caused by climate change, abnormal temperatures in winter, and aging of the ground, and the need to improve the existing rock risk area management plan has emerged. In this study, a pilot area at risk of falling rocks was selected for the Hwanggol district of Chiaksan National Park among Korean national parks, and rockfall analysis was performed using the Rockfall program, and monitoring was conducted by applying a countermeasure method combined with the measurement system to the pilot area. Through this, a rockfall management plan was proposed for continuous management and monitoring of rockfall.

Cause of Rockfall at Natural Monument Pohang Daljeon-ri Columnar Joint (천연기념물 포항 달전리 주상절리의 낙석 발생원인)

  • Kim, Jae Hwan;Kong, Dal-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.497-510
    • /
    • 2022
  • Monthly monitoring, 3D scan survey, and electrical resistivity survey were conducted from January 2018 to August 2022 to identify the cause of rockfall occurring in Daljeon-ri Columnar Joint (Natural Monument No. 415), Pohang. A total of 3,231 rocks fell from the columnar joint over the past 5 years, and 1,521 (47%) of the falling rocks were below 20 cm in length, 978 (30.3%) of 20-30 cm, and 732 (22.7%) of rocks over 30 cm. While the number of rockfalls by year has decreased since 2018, the frequency of rockfalls bigger than 30 cm tends to increase. Large-scale rockfalls occurred mainly during the thawing season (March-April) and the rainy season (June-July), and the analysis of the relationship between cumulative rainfall and rockfall occurrence showed that cumulative rainfall for 3 to 4 days is also closely related to the occurrence of rockfall. Smectite and illite, which are expansible clay minerals, were observed in XRD analysis of the slope material (filling minerals) in the columnar joint, and the presence of a fault fracture zone was confirmed in the electrical resistivity survey. In addition, the confirmed fault fracture zone and the maximum erosion point analyzed through 3D precision measurement coincided with the main rockfall occurrence point observed by the BTC-6PXD camera. Therefore, the main cause of rockfall at Daljeon-ri columnar joint in Pohang is a combination of internal factors (development of fault fracture zones and joints, weathering of rocks, presence of expansive clay minerals) and external factors (precipitation, rapid thawing phenomenon), resulting in large-scale rockfall. Meanwhile, it was also confirmed that the Pohang-Gyeongju earthquake, which was continuously raised, was not the main cause.

Application of Terrestrial LiDAR to Monitor Unstable Blocks in Rock Slope (암반사면 위험블록 모니터링을 위한 지상 LiDAR의 활용)

  • Song, Young-Suk;Lee, Choon-Oh;Oh, Hyun-Joo;Pak, Jun-Hou
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.251-264
    • /
    • 2019
  • The displacement monitoring of unstable block at the rock slope located in the Cheonbuldong valley of Seoraksan National Park was carried out using Terrestrial LiDAR. The rock slopes around Guimyeonam and Oryeon waterfall where rockfall has occurred or is expected to occur are selected as the monitoring section. The displacement monitoring of unstable block at the rock slope in the selected area was performed 5 times for about 7 months using Terrestrial LiDAR. As a result of analyzing the displacement based on the Terrestrial LiDAR scanning, the error of displacement was highly influenced by the interpolation of the obstruction section and the difference of plants growth. To minimize the external influences causing the error, the displacement of unstable block should be detected at the real scanning point. As the result of analyzing the displacement of unstable rock at the rock slope using the Terrestrial LiDAR data, the amount of displacement was very small. Because the amount of displacement was less than the range of error, it was difficult to judge the actual displacement occurred. Meanwhile, it is important to select a section without vegetation to monitor the precise displacement of unstable rock at the rock slope using Terrestrial LiDAR. Also, the PointCloud removal and the mesh model analysis in a vegetation section were the most important work to secure reliability of data.

Study on Priority of Measuring Instrument for Rockfall and Landslide Prevention (낙석.산사태 방지를 위한 계측기기의 우선순위 선정 연구)

  • Kim, Yong-Soo;Jung, Soo-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1304-1312
    • /
    • 2008
  • In this study, the analysis to the preference level on slope measuring instrument of weight values on effect factors find out the reasonable monitoring on slope was performed, in which used AHP(Analytic Hierarchy Process) techniques. The results on professional group, such as the industry, academic, institute and government, analyzed that the very important effect factors, which were indicator of various collapse type, convenience of instrument management, The evaluation of preference level on the slope measuring instrument analyzed the invar wire extensometer which was high level at convenience of install, economical efficiency of install and convenience of instrument management.

  • PDF

Development and Application of Non-Contact Rock Fall Detection System utilizing Photo Sensor and Camera (광센서와 카메라를 활용한 비접촉식 낙석감지 시스템 개발 및 적용)

  • Jung, Yong-Bok;Song, Won-Kyong;Kim, Bok-Chul;Kim, Myung-Jin
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.207-216
    • /
    • 2010
  • Rockfall monitoring systems generally used in the country are mainly based on the detection of tension of protection wire or tilting of protection post due to rock fall. However, rock fall protection net must be installed prior to the monitoring system and continual maintenance work after each rock fall event is required for a normal operation of these detection systems. To solve these problems, we suggested and implemented a non-contact rock fall detection system using multiple photo sensors and additional camera. After a laboratory experiment and field application, we can conclude that this system is effective and reliable for detecting, collecting and analyzing the rock fall information. In addition, lighten and difference operations on two captured images were able to yield rough estimation of size and direction of rock fall.

Case study of microseismic techniques for stability analysis of pillars in a limestone mine (석회석 광산 내 광주의 안정성 분석을 위한 미소진동 계측기술의 현장적용)

  • Kim, Chang Oh;Um, Woo-Yong;Chung, So-Keul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This study deals with the case that was the field application of the microseismic monitoring techniques for the stability monitoring in a domestic mine. The usefulness and limitations of the microseismic techniques were examined through analyzing the microseismic monitored data. The target limestone mine adopted a hybrid room-and-pillar mining method to improve the extraction ratio. The accelerometers were installed in each vertical pillar within the test bed which has the horizontal cross-section $50m{\times}50m$. The measured signals were divided into 4 types; blasting induced signal, drilling induced signal, damage induced signal, and electric noise. The stability analysis was performed based on the measured damage induced signals. After the blasting in the mining section close to the test bed, the damage of the pillar was increased and rockfall near the test bed could be estimated from monitored microseismic data. It was possible to assess the pillar stability from the changes of daily monitored data and the proposed safety criteria from the accumulated monitored data. However, there was a difficulty to determine the 3D microseismic source positions due to the 2D local sensor arrays. Also, it was needed to use real-time monitoring methods in domestic mines. By complementing the problems encountered in the mine application and comparing microseismic monitored data with mining operations, the microseismic monitoring technique can be used as a better safety method.

Variation of Allochthonous Gravels in the Beach Gravel Deposit of the Island Dokdo Natural Reserve (독도천연보호구역 해빈자갈퇴적층(몽돌 해변)의 외래 역 분포 변화)

  • Lim, Hoseong;Park, Jinsu;Kim, Jung-Hoon;Woo, Hyeon-Dong;Jang, Yun-Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.255-269
    • /
    • 2017
  • Five year term monitoring investigating variation of allochthonous originated gravels are has been conducted in the beach gravel deposit of the Island Dokdo natural reserve which takes purity and uniqueness with enormous attention though a number of areas. The beach gravel deposits near the dock of the Dongdo and near the accommodation facility of the Seodo comprise various types of gravels including basalt, trachyte, and tuff from the Dokdo itself, and granite, rhyolite, gneiss, quartzite, marble, and concrete from elsewhere. The types of the allochthonous gravels on the basis of the study in 2011 and in 2016 shows no difference, so is the ranking of abundance of the allochthonous gravels; granite-concrete-gneiss in turn on the Dongdo, concrete-gneiss-granite in turn on the Seodo. Nevertheless, the relative ratio of the allochthonous gravel area against the total area is decreased. While it is suspected that the disintegrated facility and the influx of material for construction are the main 2 reasons for the contamination by allochthonous gravel, diminished total contamination ratio indicate that supervising allochthonous material has been improved; at least not worse during the 5 years. On the other hand, it is inferred that gradual influence of rockfall also has been made the gravel beach changed. Therefore, consistent rockfall investigation must be inquired.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.