• Title/Summary/Keyword: rocket

Search Result 2,176, Processing Time 0.026 seconds

Launch of PE/$LN_2O$ Hybrid Rocket Vehicle and Analysis of Flight Path (PE/$LN_2O$ 소형 하이브리드 시험발사 및 비행궤도 분석)

  • Lee, Min-Ho;Kim, Jae-Wook;Sin, Jun-Ho;Um, Yong-Kyung;Oh, Yu-Jin;Lee, Sun-Jae;Jung, Young-Kyu;Jo, Jae-Yun;Choi, Young-Rok;Lee, Jung-Pyo;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.820-824
    • /
    • 2010
  • The purpose of this study is to develop basic technology of hybrid rocket vehicle by constructed and launched. This small hybrid rocket using HDPE/LN2O and Aluminium steel for its body (weight : 12.5 kg, diameter : 114 mm, height : 1.8 m) was designed. The fuel grain and injector were designed for 50 kgf thrust and burning time 2.5 sec. This rocket was loaded the data acquisition device for obtaining data of pressure and velocity during its flying and equiped an automatic ejector system using spring/motor and timer to collect the rocket more safely after launching. It was launched successfully, but found some problem that the rocket's weight was heavier than expected and the thrust was not enough to reach the designed altitude and analyzed its flight path way.

  • PDF

Korean rocket's technology (한국 로켓 기술)

  • Chae, Yeon-Seok
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.4
    • /
    • pp.25-29
    • /
    • 2012
  • Korea and North Korea satellite launching each other competitors. North Korea satellite launch in 1998, 2009 and 2012 by Taepodong-1, Unha-2 and 3 but failed attempts to. Korea also satellite launch in 2009, 2010 by Naro space-rocket but failed attempts to. Korea and North Korea's rocket technology to compare.

  • PDF

A Study on the Thermal Shock Characteristics of the Rocket Nozzle Material (로켓 노즐 재료의 열충격특성에 관한 연구)

  • Lee, Jang-Won;Lee, Young-Shin;Kim, Jae-Hoon;Kim, Seung-Joong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.562-566
    • /
    • 2004
  • Thermal shock is a physical phenomenon that occurs in the condition of the exposure of a rapidly large temperature and pressure change of in the quenching condition of material. The rocket nozzle is exposed to high temperature combustion gas, it may have failure and erosion deformation. So, it is important to select a suitable material having excellent thermal shock properties and evaluate these materials in rocket design. In this study, the temperature gradient and crack initiation of rocket nozzle material is investigated using by FEM under thermal shock condition. This is very important information in the design process of thermal structure.

  • PDF

Structural Analysis for Thread Joint Part of Rocket Motor Case Applied Pre-load (초기하중을 받는 로켓모타 케이스 나사체결부의 구조해석)

  • Koo, Song-Hoe;Cho, Won-Man;Lee, Bang-Eop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.144-149
    • /
    • 2007
  • Behaviour of a thread joint of a rocket motor case show complex structural characteristics. Pre-torque must be applied to the threads to prevent the loosening of the interface from the additional pressure load. During the pressurization of the rocket motor case, the jointing face may be opened if the pre-torque were not set properly or the structure may be failed if the local concentrated stress exceeds the strength of the material. In this paper, the structural behaviour of a thread joint of a rocket motor case were analyzed by the finite element method and the results were compared to the experimental ones. A method to set a pre-torque for a thread joint were proposed to ensure the structural safety.

Thrust and Propellant Mixture Ratio Control of Open Type Liquid Propellant Rocket Engine (개방형 액체추진제로켓엔진의 추력 및 혼합비 제어)

  • Jung, Young-Suk;Lee, Jung-Ho;Oh, Seung-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1143-1148
    • /
    • 2007
  • LRE(Liquid propellant Rocket Engine) is one of the important parts to control the motion of rocket. For operation of rocket in error boundary of the set-up trajectory, it is necessarily to control the thrust of LRE according to the required thrust profile and control the mixture ratio of propellants fed into combustor for the constant mixture ratio. It is not easy to control thrust and mixture ratio of propellants since there are co-interferences among the components of LRE. In this study, the dynamic model of LRE was constructed and the dynamic characteristics were analyzed with control system as PID control and PID+Q-ILC(Iterative Learning Control with Quadratic Criterion) control. From the analysis, it could be observed that PID+Q-ILC control logic is more useful than standard PID control system for control of LRE.

  • PDF

A Study on the Analysis of Pogo Stability of Liquid Propellant Rocket (액체추진로켓의 포고 안정성 해석에 관한 연구)

  • 장홍석;연정흠;윤성기;정태규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.10-13
    • /
    • 2002
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. The constitutive equation of propulsion system is a homogeneous second-order equation form in the Laplace domain. Rocket structure is modeled using FEM. From the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed of all propulsion system equations and vehicle motion equations reacting on the vehicle by each component of propulsion system. The stability is obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability is carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

  • PDF

Thermochemical Performance Analysis of KSR-III Rocket Nozzle (KSR-III 로켓 노즐의 열화학적 성능해석)

  • Choi, J.Y.;Choi, H.S.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.90-98
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed, those were coupled with the methods of computational fluid dynamics code. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis. The approaches were used for the performance prediction of KSR-III Rocket, and compared with the theoretical results from NASA CEA (Chemical Equilibrium with Applications) code.

  • PDF

A Study on the Development Method of the Domestic New Generation Multiple Launcher Rocket System (국내 차기 다련장 로켓 개발방안에 대한 고찰)

  • Cho, Ki-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2008
  • Korean army currently considers the development of the advanced MLRS(Multiple Launcher Rocket System) as a new alternative, which responses on the renovation of the artillery and future battle field environment. Therefore, This study suggests that the development methods of MLRS based on the analysis of the future battle field environment, world wide development trends of the MLRS and operation states of the domestic MLRS. According to this study, the development methods of new generation MLRS should be included a 230/130mm combined launcher competible with conventional 227mm on the vehicle, advanced FCS(Fire Control System), GPS/INS integration navigation system, Pod of ammunitiom, ammunition carrring vehicle and guided rocket munitions, etc.

Development of a Hydrogen-Peroxide Rocket Engine of l00N Thrust (l00N $H_2O_2$ Monopropellant 로켓 엔진의 개발)

  • Sang-Hee Ahn;S. Krishnan;Choog-Won Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-134
    • /
    • 2003
  • There has been a renewed interest in the use of hydrogen peroxide as an oxidizer in bipropellant liquid rocket engines as well as in hybrid rocket engines. This is because hydrogen peroxide is a propellant of low toxicity and enhanced versatility. The present paper details the features of the designed engine of l00N thrust and its facility. Also explained is the arrangement of the distillation unit to be used to prepare rocket-grade hydrogen-peroxide propellant. Results of the simulated "cold" tests are presented.

  • PDF

The Studies on the Design of a Subscale Solid Propellant Rocket Motor (축소 모사형 고체 추진기관 설계에 관한 연구)

  • Kim, Hyung-Won;Oh, Jong-Yun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.215-218
    • /
    • 2009
  • A design of a subscale solid propellant rocket motor was conducted to do the similitude experiments for the large scale rocket motor. One of the main factor to subscale was the mach number of the solid propellant flume through a nozzle exit The analysis of the flume flow was done to obtain the mach number for the large and subscale rocket motor. The flume shapes on the non dimensional axises by the nozzle exit diameter was matched each other. The propellant grain of a subscale solid rocket motor was designed by the profile of pressure vs time obtained by the mach number of the flume shape. Some analyses of the theoretical solution were compared with the results of the ground static test.

  • PDF