• Title/Summary/Keyword: rock weathering

Search Result 414, Processing Time 0.023 seconds

A Proposal of Geological Investigation method Concomitant with Ground Construction : In the Light of Southeast Korean peninsula. (건설공사에 수반되는 지질조사 방법에 대한 제안 : 한반도 동남부 지역을 중심으로)

  • 류춘길;김성욱;이현재;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.87-92
    • /
    • 2002
  • Engineering geological studies were conducted for igneous rocks in southeast Korean peninsula. The purpose of the study is to establish zoning in view of engineering geology in ground construction. For engineering geological implication, lithology, lineament structure and discontinuities were surveyed and analysed. Using constructed data, We compared geological and engineering geological characteristics and made out the detailed engineering geological map. The map responses engineering characteristics such as weathering degrees, discontinuity systems of different rock types.

  • PDF

Topographical Landscapes and their Controlling Geological Factors in the Cheongryangsan Provincial Park: Lithologic Difference and Faults (청량산 도립공원의 지형경관과 지질학적 지배 요인: 암질차이와 단층)

  • Hwang, Sang Koo;Son, Young Woo;Son, Jin Dam
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.167-181
    • /
    • 2017
  • Cheongryangsan area ($49.51km^2$) has been designated as the Provincial Park in 1982, because it has magnificent aspect and seasonally spectacular landscapes. Especially, Cheongryangsa sitey ($4.09km^2$) has been designated as Noted Scenery No. 23 in 2007, because it has the same topographical landscape as rock cliffs, rock peaks and caves. The most spectacular landscapes are exhibited in the Cheongryangsan Conglomerate and Osipbong Basalt. There are twelve rock peaks on the ridges of the two strata, and many rock cliffs in the several valleys of strata, in which a few caves are formed by differential weathering and erosion. The valleys, in which flow Cheongryang, Bukgok and Cheonae streams, are classified as fault valleys along WNW-ESE faults. The rock cliffs were generated from vertical joints parallel to WNW-ESE faults in the two strata, and the caves were formed by differential weathering and erosion along bedding of sandstones and shales intercalated in the conglomerates. The rock peaks are landscapes formed by differential erosion along crossed vertical joints in the ridges. The vertical joints are developed subparallel to two WNW-ESE faults and a NNE-WWS fault. Therefore the topographical features are caused by existence of the faults and Lithologic difference in the Cheongryangsan Conglomerate and Osipbong Basalt, and by differential weathering and erosion along them.

A Study on the Characteristics and Utilization Measures of Rock Formations in the Romantic Road in the Eastern Coast of Korea (동해안 낭만가도의 바위지형경관 특성과 활용방안)

  • Kwon, Dong Hi
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, a total of 80 rock formations in the romantic road(Nangmangado) were investigated and analyzed and the results are as follows. The area in where the rock formations landscape is seen the most is Yangyang(43 formations), and the formations are most densely concentrated in Jukdo beach when seen from the site group. The most observed landform is weathering landform(61%) and the rest is comprised of coastal landform(24%) and structural landform(15%). For weathering landform, Tafoni takes up the largest portion (33%) and is followed by Corestone(27%), Tor(22%), Gnamma(10%), Groove(4%) and Exfoliation(4%). Considering academic value, rarity and accessibility overall, the 35 landforms are expected to have high utility value as tourism resources and topography filed course. And out of these 35 landforms, 11 are concentrated in Dongsan beach in Yangyang. Therefore, it seems worthy to consider developing Dongsan beach under the name of "Dongsan Coast Rock Park(Tentative Name)" to be actively utilized as tourism resources. The landforms which are evaluated as highly valuable for geomorphology filed course are a total of 16 areas including Fan rock and Op rock formations. In these areas, typical weathering landforms are concentrated in one spot and two or three other types of landform can also be additionally observed, allowing the place to be highly efficient for field education.

  • PDF

Failure Characteristics of Cut Slopes in Sedimentary Rock of Kyongsang Basin (경상분지 퇴적암 절취사면의 붕괴특성)

  • 유병옥;황영철;정형식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.339-346
    • /
    • 1999
  • The stability of rock slope is considered to have a deep relation with types of rocks because types of rocks have their own typical weathering profiles, geological structures and characteristics of failures. Therefore it is essential for the evaluation of rock slope stability to analyze geological and engineering characteristics in rock mass. The data which collected from investigated slopes in sedimentary rock of Kyengsang Basin along highways were analyzed. Primary factors affecting slope stability in rock mass are: dips and strikes of slopes and discontinuities, shear strength of discontinuities, slope geometry and geological structures etc.

  • PDF

(A study failure-strength characteristics of soil layer contained Corestone) (핵석을 포함하는 토층의 파괴강도 특성연구)

  • 이수곤;금동헌
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.711-716
    • /
    • 2002
  • When judging the ground by core-logging, depth of coring might be stopped by coming into view of the moderately weathered rock and also considered as bedrock line. However, highly weathered rock may appear again, if coring more, because there are core-stones in the residual soil and highly weathered rock by the effect of hydraulic-thermal differentiation and does the irregular rock weathering or metamorphic rock region. Therefore, there are room for misunderstanding of diagnosing the moderately weathered rock. Even though the irregular ground where the corestones were come out will show clear geotechnical differences between the ground and the gradually weathered bedrock, nowadays, the construction sites do not take into account the characteristic of core-stone region. In conclusion, to study the failure-strength characteristics of soil layers containing core-stones, we made artificial core-stones and varied percentage of corestones, and measured cohesion and friction factors to adjust them to construction sites containing corestones such as slope, tunnel, and underground.

  • PDF

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.

Chemical Weathering Trend of Granitic Rock by evaluated with CIA in Southern Korea (화학적 풍화지수(CIA)로 본 한반도 중남부 화강암류의 화학적 풍화 경향성)

  • KIM, Young-Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.53-64
    • /
    • 2011
  • Grus weathering mantles are widely distributed in Southern Korean Peninsula and are considered to be results of chemical weathering related to palaeoclimate milieu. This paper attempts to address this issue by CIA(chemical index of alteration). The climatic approach to the formation of grus mantles offers limited explanation of field occurrences, as these materials are widespread across climatic zones, from the humid tropics to cool temperate areas, although rates of grusification are likely to be influenced by climatic parameters. CIA values for granitoid weathering mantles in S. Korea are 50, which is the same of unweathered granitic rocks. Grus mantles in Korean peninsula show very low level in chemical alteration by CIA.

Formation of Acid Mine Drainage and Pollution of Geological Environment Accompanying the Sulfidation Zone of Nonmetallic Deposits: Reaction Path Modeling on the Formation of AMD of Tongnae Pyrophyllite Mine (비금속광상의 황화광염대에 수반되는 산성광산배수의 형성과 지질환경의 오염 : 동래납석광산 산성광산배수의 형성에 관한 반응경로 모델링)

  • 박맹언;성규열;고용전
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.405-415
    • /
    • 2000
  • This study was carried out to understand the formation of acid mine drainage (AMD) by pyrophyllite (so-called Napseok)-rainwater interaction (weathering), dispersion patterns of heavy metals, and patterns of mixing with non-polluted water in the Tongnae pyrophyllite mine. Based on the mass balance and reaction path modeling, using both the geochemistry of water and occurrence of the secondary minerals (weathering products), the geochemical evolution of AMD was simulated by computer code of SOLVEQ and CHILLER. It shows that the pH of stream water is from 6.2 to 7.3 upstream of the Tongnae mine. Close to the mine, the pH decreases to 2. Despite being diluted with non-polluted tributaries, the acidity of mine drainage water maintains as far as downstream. The results of modeling of water-rock interaction show that the activity of hydrogen ion increases (pH decreases), the goncentration of ${HCO_3}^-$ decreases associated with increasing $H^+$ activity, as the reaction is processing. The concentration of ${SO_4}^{2-}$first increases minutely, but later increases rapidly as pH drops below 4.3. The concentrations of cations and heavy metals are controlled by the dissolution of reactants and re-dissolution of derived species (weathering products) according to the pH. The continuous adding of reactive minerals, namely the progressively larger degrees of water-rock interaction, causes the formation of secondary minerals in the following sequence; goethite, then Mn-oxides, then boehmite, then kaolinite, then Ca-nontronite, then Mgnontronite, and finally chalcedony. The results of reaction path modeling agree well with the field data, and offer useful information on the geochemical evolution of AMD. The results of reaction path modeling on the formation of AMD offer useful information for the estimation and the appraisal of pollution caused by water-rock interaction as geological environments. And also, the ones can be used as data for the choice of appropriate remediation technique for AMD.

  • PDF

Velocity analysis of various granite and its impact on determination of weathering (화강암의 속도 분석과 풍화도 산정에 미치는 영향)

  • Lee, Jae-Sung;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.201-206
    • /
    • 2008
  • Determining the coefficient of weathering(CW) for stone heritage plays very important role in investigation and conservation plan. In most case, CW is obtained from the empirical relation, which use the difference between sonic velocities of fresh and weathered rocks. In this paper, we measured sonic velocities for the samples from Iksan, Geochang, Wonju, Goesan and Chungju of which our stone heritages are made. We first investigate the uncertainty of velocity by portable measurement by comparing it to lab measurement. There were small difference, but we conclude that the difference is not major. However, the velocity of fresh rock differs significantly among samples: ranging from 3200 to 4400m/s. This cause a lot of error in CW estimation if we use typical fresh rock velocity as of 5000m/s. Thus accurate measurement of the velocity of fresh rock is crucial to CW estimation.

  • PDF