• 제목/요약/키워드: rock tunnel

검색결과 2,144건 처리시간 0.028초

Roof collapse of shallow tunnel in layered Hoek-Brown rock media

  • Yang, X.L.;Li, K.F.
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.867-877
    • /
    • 2016
  • Collapse shape of tunnel roof in layered Hoek-Brown rock media is investigated within the framework of upper bound theorem. The traditional collapse mechanism for homogeneous stratum is no longer suitable for the present analysis of roof stability, and it would be necessary to propose a curve failure mode to describe the velocity discontinuity surface in layered media. What is discussed in the paper is that the failure mechanism of tunnel roofs, consisting of two different functions, is proposed for layered rock media. Then it is employed to investigate the impending roof failure. Based on the nonlinear Hoek-Brown failure criterion, the collapse volume of roof blocks are derived with the upper bound theorem and variational principle. Numerical calculations and parametric analysis are carried out to illustrate the effects of different parameters on the shape of failure mechanism, which is of overriding significance to the stability analysis of tunnel roof in layered rock media.

Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake

  • Liu, Xin-Rong;Li, Dong-Liang;Wang, Jun-Bao;Wang, Zhen
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.427-445
    • /
    • 2015
  • By means of finite element numerical simulation and pseudo-static method, the shallow-buried bilateral bias twin-tube tunnel subject to horizontal and vertical seismic forces are researched. The research includes rupture angles, the failure mode of the tunnel and the distribution of surrounding rock relaxation pressure. And the analytical solution for surrounding rock relaxation pressure is derived. For such tunnels, their surrounding rock has sliding rupture planes that generally follow a "W" shape. The failure area is determined by the rupture angles. Research shows that for shallow-buried bilateral bias twin-tube tunnel under the action of seismic force, the load effect on the tunnel structure shall be studied based on the relaxation pressure induced by surrounding rock failure. The rupture angles between the left tube and the right tube are independent of the surface slope. For tunnels with surrounding rock of Grade IV, V and VI, which is of poor quality, the recommended reinforcement range for the rupture angles is provided when the seismic fortification intensity is VI, VII, VIII and IX respectively. This study is expected to provide theoretical support regarding the ground reinforcement range for the shallow-buried bilateral bias twin-tube tunnel under seismic force.

증기압을 이용한 파암공법의 현장 적용성 연구 (Experience of the Application of a Rock Cracking Method Using Steam Pressure to Tunnel Excavation)

  • 김덕영;김선웅
    • 화약ㆍ발파
    • /
    • 제35권2호
    • /
    • pp.1-8
    • /
    • 2017
  • 본 연구에서는 증기압을 이용한 새로운 파암공법의 특징을 간략하게 소개하였다. 이 파암공법은 지하암반굴착에서 지반진동을 저감시키려는 목적으로 개발된 것이다. 한 터널굴착 현장에서 대상공법에 대한 검증시험을 실시하였다. 지반진동은 시험현장 부근에서 측정하였다. 측정된 진동자료는 일본의 한 기업이 제안한 진동 추정식으로 예측한 결과와 서로 비교하였다. 공법의 경제성을 입증해 보이기 위해 간단한 비용분석 결과도 제시하였다.

모래자갈과 암반의 복합지층에 시공한 저심도 터널의 사례연구 (Case Study of a Shallow Tunnelling Through Complex Strata of Sand-Gravel and Rock Mass)

  • 김치환
    • 터널과지하공간
    • /
    • 제25권3호
    • /
    • pp.244-254
    • /
    • 2015
  • 모래와 자갈이 암반 위에 퇴적된 지층에서 터널의 윗부분이 지하수가 많은 모래자갈층을 통과하는 상황에서 터널을 시공하였다. 지상의 일부 곡선구간에 빌딩들도 있는 저심도 터널을 안전하게 시공하기 위하여 강도가 작고 지하수가 많은 터널천정부의 모래자갈이 터널 내로 낙하하는 유사현상(sand flow)을 예방해야 하였다. 이를 위하여 대구경강관다단그라우팅이나 제트그라우팅으로 터널주변 충적층을 굴착 전에 미리 보강한 후 터널을 시공하였다. 이와 같이 터널을 보강한 효과와 지상빌딩의 안전을 시공 중 계측을 통하여 확인하였다.

터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법 (Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel)

  • 문준식
    • 한국터널지하공간학회 논문집
    • /
    • 제15권3호
    • /
    • pp.333-344
    • /
    • 2013
  • 본 연구에서는 절리 암반 내 터널굴착 시 지하수 유출량 예측량이 실제 계측치와 큰 차이가 나는 이유 중 하나인 터널주변 절리암반의 투수계수의 감소 현상에 대해 논의하였다. 현재 터널 설계 시 일반적으로 사용되고 있는 지하수 유출량 산정식은 터널주변 암반이 등방, 균질하고 일정한 투수계수를 유지한다고 가정한다. 하지만, 실제로는 터널주변 절리암반의 투수계수는 터널주변 유효응력 상태에 따라 변화하며, 절리 내 지하수 흐름에 따라 다시 터널주변 유효응력 분포가 영향을 받는 수리-역학적 상호거동을 보인다. 터널굴착 직후 터널 접선방향 유효응력이 응력집중과 간극수압 감소로 인해 급증하고 그에 따라 절리의 닫힘현상이 발생하며, 결과적으로 터널인접 절리암반 링 구간에서 투수계수가 급격히 감소하게 된다. 이러한 터널인접 링 구간 내에서 상당히 큰 간극수압 감소가 발생하게 되어 터널주변 간극수압 분포는 등방 균질의 절리암반으로 가정한 산정식과 큰 차이를 보인다. 본 연구에서는 절리암반의 수리-역학적 상호거동의 개념을 도입하여 터널주변 간극수압 분포와 터널 내 지하수 유입량 산정방법을 제안하고 이를 수치해석을 통해 검증하였다.

쌍굴터널 굴진에 따른 주변지반의 거동과 간섭효과 (Effect of interference and Ground Movement by Twin Tunnelling)

  • 김학문
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.136-142
    • /
    • 1997
  • The behaviour of ground movement during the construction of two parallel tunnels in weathered zone and soft rock has been investigated. All the influencing factors for the behaviour of twin tunnel such as tunnel size, ground conditions, tunnel depth, pillar width and initial state of ground stresses were examined The results of FEM nonlinear analysis were compared with some of model test results in weathered zone to verify the numerical method. It was found that minimum interference was obtained in the parallel construction case when the twin tunnel distance (pillar width) is just over the twice of tunnel diameter. Guide line for the interference of twin tunnelling has been introduced for the ground of weathered zone and soft rock.

  • PDF

동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구(l)-수문학 및 암반수리학적 접근을 중심으로 (A Study on the Variation of the Surface and Groundwater Flow System related to the Tunnel Excavation in DONGHAE Mine Area(l)-Concern on Hydrological and Rock Hydraulic Approach)

  • 이희근;전효택;이종운;이대혁;류동우;오석영
    • 터널과지하공간
    • /
    • 제5권4호
    • /
    • pp.347-362
    • /
    • 1995
  • The purpose of this study was that manage effectively the excavation process of the transport tunnel in DONGHAE mine area by investigating the variationof the surface and groundwater flow system around the tunnel and neighbouring villages. Thus, the effect of excavation and water-prrofing process on the water system has been studied through the naked eye survey of the tunnel and the surface outcrop, joint survey, core drilling, the measurement of the surface water quantity, evapotranspiration and precipitation analysis, rock hydraulics approach, the pressure test of boreholes, the variation of the water level, and finally the numerical analysis. From above approachs, we derived the conclusion that the exhaustion of the surface water was not caused by the tunnel excavation on the groundwater system was minimized by effective water proofing process.

  • PDF

비균질/이방성 암반에서의 터널 거동 분석을 위한 수치해석적 연구 (Numerical Analysis on the Effect of Heterogeneous/Anisotropic Nature of Rock Masses on Displacement Behavior of Tunnel)

  • 백승한;김창용;김광염;홍성완;문현구
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.939-948
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of tunnel. Tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysedby 2-D and 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of tunnel face can be possible.

  • PDF

산악터널에 인접한 개인 박물관의 발파공해 영향평가 및 굴착 시공사례 (The Blasting Pollution Effects Estimation & The Excavation Construction Case Study Of Personal Museum On Tunnel)

  • 권순섭;이명철;박태순;정인철;이현구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.127-132
    • /
    • 2004
  • The third double-track construction part of work, called Chung Ang Railroad line(Deok-So$\∼$Won-Ju) is in progress and the personal museum located 330m from the starting point of Pal-Dang Tunnel(length=4,470m) line in the canyon is to be effected by rock blasting during the tunnel excavation work, especially museum articles and building itself. This paper is the example of application suitable tunnel rock blasting pattern for excavation after the case study about the investigation and analysis of rock blasting noise pollution during tunnel excavation work. The museum is a three-story building, RC concrete structure and is located 17m from the top of the tunnel, in the center of the double-track line. Comparing estimate vibration frequency with site vibration one, it can be verified the reasonable rock blasting noise pollution as improving the application of tunnel excavation rock blasting pattern. The above pattern has been selected economically and effectively and applied to our construction field.

  • PDF

Blow-out pressure of tunnels excavated in Hoek-Brown rock masses

  • Alireza Seghateh Mojtahedi;Meysam Imani;Ahmad Fahimifar
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.323-339
    • /
    • 2024
  • If the pressure exerted on the face of a tunnel excavated by TBM exceeds a threshold, it leads to failure of the soil or rock masses ahead of the tunnel face, which results in heaving the ground surface. In the current research, the upper bound method of limit analysis was employed to calculate the blow-out pressure of tunnels excavated in rock masses obeying the Hoek-Brown nonlinear criterion. The results of the proposed method were compared with three-dimensional finite element models, as well as the available methods in the literature. The results show that when σci, mi, and GSI increase, the blow-out pressure increases as well. By doubling the tunnel diameter, the blow-out pressure reduces up to 54.6%. Also, by doubling the height of the tunnel cover and the surcharge pressure exerted on the ground surface above the tunnel, the blow-out pressure increased up to 74.9% and 5.4%, respectively. With 35% increase in the unit weight of the rock mass surrounding the tunnel, the blow-out pressure increases in the range of 14.8% to 19.6%. The results of the present study were provided in simple design graphs that can easily be used in practical applications in order to obtain the blow-out pressure.