• Title/Summary/Keyword: rock tunnel

Search Result 2,144, Processing Time 0.03 seconds

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

Experimental investigation of long-term characteristics of greenschist

  • Zhang, Qing-Zhao;Shen, Ming-Rong;Ding, Wen-Qi;Jang, Hyun-Sic;Jang, Bo-An
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.531-552
    • /
    • 2016
  • The greenschist in the Jinping II Hydropower Station in southwest China exhibits continuous creep behaviour because of the geological conditions in the region. This phenomenon illustrates the time-dependent deformation and progressive damage that occurs after excavation. In this study, the responses of greenschist to stress over time were determined in a series of laboratory tests on samples collected from the access tunnel walls at the construction site. The results showed that the greenschist presented time-dependent behaviour under long-term loading. The samples generally experienced two stages: transient creep and steady creep, but no accelerating creep. The periods of transient creep and steady creep increased with increasing stress levels. The long-term strength of the greenschist was identified based on the variation of creep strain and creep rate. The ratio of long-term strength to conventional strength was around 80% and did not vary much with confining pressures. A quantitative method for predicting the failure period of greenschist, based on analysis of the stress-strain curve, is presented and implemented. At a confining pressure of 40 MPa, greenschist was predicted to fail in 5000 days under a stress of 290 MPa and to fail in 85 days under the stress of 320 MPa, indicating that the long-term strength identified by the creep rate and creep strain is a reliable estimate.

Evaluation of disc cutter penetration depth of shield TBM in practice (쉴드TBM의 현장 디스크커터 관입깊이에 대한 연구)

  • Kim, Sang-Hwan;Park, In-Joon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.321-331
    • /
    • 2013
  • This paper describes the evaluation of shield TBM disc cutter penetration depth in practice. In this study the disc cutter penetration depth used to design the excavation speed of tunnel is reviewed. The characteristics of ground encountered in the investigation site are analysed and evaluated. The shield TBM used in the field is reviewed to verify the applicability of machine in the site. The thrust and torque capacities of each TBM disc cutter are also evaluated. Based on the field data, the excavation volume and speed are re-analysed to evaluate the disc cutter penetration depth used in the design stage. It is clearly found that the design value of disc cutter penetration depth needs to modify when estimation of the TBM capacities in very hard rock formation ($S_c$ >150 MPa).

An Experimental Study on the Characteristics of a Composite Structure of Lattice Girder and Shotcrete (격자지보와 숏크리트 복합구조체의 특성 실험 연구)

  • Mun, Hong-Deuk;Baek, Yeong-Sik;Bae, Gyu-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.155-168
    • /
    • 1997
  • Lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is installed after tunnel excavation. Lattice girder has the following several advantages : 1. Lattice girder minimizes the amount of shotcrete shadow which happens to occur behind a steel support. 2. A triangular shape of lattice girder makes shotcrete placed efficiently. 3. Lattice girder provides a good bond strength for shotcrete, which makes the composite structure of lattice girder and shotcrete behave monolithic, and therefore, the rock load can be supported effectively by the lattice girder system, This paper presents the results from a model wall test, a strength test for shotcrete shot on the model wall and a strength test for the bond between lattice girder and shotcrete. These tests proved that lattice-girder system is superior to H-shaped steel-set system concerning the shotcrete rebound rate, the developed shotcrete strength and the adhesion characteristics.

  • PDF

Development of Spatial Information System for Regional Ground Stability Assessment near Dam area (댐 주변지역 광역적 지반 안정성 평가를 위한 공간 정보시스템 개발)

  • 장범수;이사호;최위찬;최재원;오영철
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.125-135
    • /
    • 2001
  • Ground failure such as landslide, rock fall land subsidence by heavy rainfall have damaged to people and property. Especially, the damage to important facility such as dam, bridge, tunnel and industrial complex may be possible. Therefore the ground failure must be assessed and counter plan must be prepared. So, the object of this study is to develop the spatial information system for regional ground stability assessment. For this, the topographic, geologic, soil, forest, land use, rainfall frequency map, and satellite image near 40 dams were collected and constructed to the spatial information system. The spatial information system was developed using Avenue in ArcView 3.2 environment and consists of pull down menus and icons. For application of the spatial information system, regional ground stability was assessed in Andong dam. The assessment was ground failure susceptibility and possibility. The spatial information can be used for regional ground stability assessment, prevention and mitigation of hazard, and management of ground as basic data.

  • PDF

A Study on the Temperature Distribution Change of the Spent Nuclear Fuel Disposal Canister and its Surrounding Structures due to the Spent Fuel Heat according to the Deposition Time Elapse (고준위폐기물 열에 의한 처분용기 및 처분용기 주위 구조물의 시간경과에 따른 온도분포 변화)

  • Choi, Jong-Won;Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • The prediction of the temperature distribution change of the spent nuclear fuel disposal canister and its surrounding structures (bentonite buffer, granitic rock etc.) due to the spent fuel heat is very important for the design of the 500m deep granitic repository for the spent nuclear fuel disposal canister (about 10,000 years long) deposition. In this study, the temperature distribution change of the composite structure which comprises the canister, the bentonite buffer, the deposition tunnel due to the spent fuel heat is computed using the numerical analysis method. Specially, the temperature distribution change of the composite structure is analysed as the deposition time elapses up to m years. The analysis result shows that the temperature of each part of the repository increases slowly in different way but the latest part temperature increases slowly up to 150 years and thereafter decreases slowly.

A Study on the Decay Effect of Ground Vibration based on the Number of PLHBM Holes in Gneiss Area (편마암지역에서 선대구경 수평보링 공수적용에 따른 지반진동 감쇠효과 연구)

  • Choi, Hyung-Bin;Han, Dong-Hun;Ki, Kyung-Chul
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, the field tests were performed on V-cut, PLHBM 1 hole, PLHBM 2 hole in gneiss area in order to compare the effects of the vibration decay of a tunnel cut-hole according to the number of PLHBM holes with scaled distance. Based on the prediction equation of blasting vibration from the result of the tests, the decay rate of vibration were confirmed 21.8~61.1% using PLHBM 1 hole, 35.7~79.3% using PLHBM 2 hole for scaled distance within $10{\sim}100m/kg^{1/2}$ on the basis of V-cut PPV. As the scaled distance was increased, the effect of vibration decay was decreased. The effect of vibration decay of cut-hole for intial PLHBM 1~2 hole was significantly high.

A Study on Development of Shotcrete Material using Fly Ash (Fly Ash을 이용한 Shotcrete 재료의 개발에 관한 연구)

  • 한오형;강추원
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • Currently, the shotcrete used as basic support in the tunnel excavation, has the advantages of maintaining high-level strength in condition of early shooting with thin thickness based on the excavation characteristics of rock mass. Therefore supreme equipment and materials were developed and the great strides have continued. Also, the development of measurement technology and the rocks behaviors of undergound are evaluated in detail and the designs of strength and thickness are made. The reinforcement materials development of new material is carried on. Most of the coal fly ash produced in Korea fire power plant is fly ash and bottom mash. Fly ash has been producing to be applied in many fields such as cement, aggregate, construction, civil, agriculture and fisheries. Also a lot of experiments are actively on the way. Therefore in this experiment, in order to use the fly ash mixed with concrete as a material of shotcrete, the experiment was performed in the best content to reduce the compression strength and the shooting rebound ratio of the excavated surface to use fly ash as a substitute material of concrete. As a result, when 15%.wt substitution was made to the fly ash, about 10% of compression strength and 6% of rebound ratio was reduced.

Development of New Micro-Cement Grouting Materials for Tunneling (터널 보강용 고성능 침투 주입재 연구개발)

  • Lim, Yu-Jin;Lee, Kang-Ho;Kim, Hyung-Kyum;Hong, Chang-Soo;Ahn, Joon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1559-1570
    • /
    • 2008
  • A new grouting material named 3S is developed that can be used effectively for reinforcing cut surface of weathered rock in processing of tunneling. The new material is composed of mostly micro slag cement and general Portland cement, but the material is foundered again upto $8,000\;cm^2/g$ of specific area so that it can be easily infiltrated in to the ground. For verifying technical and engineering quality of the material several laboratory tests with specially designed test apparatus were performed including compression tests, infiltration tests and resonant column tests. It was verified that the newly developed grouting material at early age of 1 or 3 days generates 200~1500% higher compressive strength and 400~560% larger elastic modulus than those of the LW(LW-1) or micro-cement(LW-2) grouting materials in the market. In addition, the new 3S grouting material could be so easily infiltrated into the model ground in the lab tests that it produces 4 times larger grouted roots in average compared to the usual water glass type grouting material(LW-1). Thus, it can be said that the newly developed grouting material can effectively prevent inflow water into tunnel compared to LW grouting materials.

  • PDF

Analysis of Excavation Speed and Direct Construction Cost Based on the Operating Productivities of TBM Method Site - Diameter 5.0m Target (수로터널공사의 효율성 분석을 통한 굴진속도 및 직접공사비 분석 - 구경 5.0m 중심으로)

  • Park, Hong Tae;Lee, Yang Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.328-335
    • /
    • 2012
  • The resource-based estimating based on standard unit price of construction work was estimated by multiplying the price per standard unit of work on the amount of labor, material, equipment use time. However, limitation of the resource-based estimating way does not adequately reflect the actual transactions prices. On the subject of water tunnel excavation as a new attempt to overcome these limitations, this study analyzed productivity by work type into cutter inspection/ exchange, TBM maintenance, TBM inspection/refueling, subsequent installations, tramcar, operating change, a cave-underground reinforcement / rock reinforcement, safety / meetings and analyzed actual cost estimating and the net advance rate based on this analysis result. Actual cost estimating calculation approach presented in this study can be utilized as a useful tool to predict the actual cost estimating in the TBM water tunnels field.