• Title/Summary/Keyword: rock tunnel

Search Result 2,152, Processing Time 0.025 seconds

Coupled analysis for the stability estimation of a subsea tunnel in discontinuous rock masses using sensitivity analysis (민감도 분석을 통한 불연속 암반 내의 해저터널의 안정성 평가를 위한 연계해석)

  • You, Kwang-Ho;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.421-430
    • /
    • 2008
  • In discontinuous rock masses, hydraulic-mechanical coupled analyses are required since groundwater flow in joints have a great influence on the stability of a subsea tunnel. In this study, a sensitivity analysis was performed based on coupled analysis to verify the routine which can estimate the safety factor of a tunnel in discontinuous rock mass. To this end, 324 cases of numerical calculations were performed with a commercial program, UDEC-2D. As a result, it was confirmed that the proposed routine for coupled analysis in discontinuous rock mass could give a reasonable result for the estimation of safety factor of a tunnel. Therefore, it is expected that the safety factor estimation method used in this study can be effectively applied for the stability estimation of a subsea tunnel in discontinuous rock masses.

  • PDF

Rock Classification Prediction in Tunnel Excavation Using CNN (CNN 기법을 활용한 터널 암판정 예측기술 개발)

  • Kim, Hayoung;Cho, Laehun;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.37-45
    • /
    • 2019
  • Quick identification of the condition of tunnel face and optimized determination of support patterns during tunnel excavation in underground construction projects help engineers prevent tunnel collapse and safely excavate tunnels. This study investigates a CNN technique for quick determination of rock quality classification depending on the condition of tunnel face, and presents the procedure for rock quality classification using a deep learning technique and the improved method for accurate prediction. The VGG16 model developed by tens of thousands prestudied images was used for deep learning, and 1,469 tunnel face images were used to classify the five types of rock quality condition. In this study, the prediction accuracy using this technique was up to 83.9%. It is expected that this technique can be used for an error-minimizing rock quality classification system not depending on experienced professionals in rock quality rating.

Tunnel-Lining Analysis in Consideration of Seepage and Rock Mass Behavior (투수 및 암반거동을 고려한 터널 라이닝의 거동 분석)

  • Kong, Jung-Sik;Choi, Joon-Woo;Nam, Seok-Woo;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.359-368
    • /
    • 2006
  • After construction, time-variant seepage and long-term underground motion are representative factors to understand the abnormal behavior of tunnels. In this study, numerical models have been developed to analyze the behavior of tunnels associated with seepage and long-term underground motion. Possible scenarios have been investigated to establish causes-and-results mechanisms. Various parameters such as permeability of tunnel filter, seepage condition, water table, long-term rock mass load, size of damaged zone due to excessive blasting have been investigated. These are divided into two sub-parts depending on the tunnel type and major loading mechanisms depending on the types. For the soft ground tunnels, the behavior associated with seepage conditions has been studied and the effect of permeability change in tunnel-filter and the effect of water-table change which are seldom measurable are investigated in detail. For the rock mass tunnels, tunnel behavior associated with the visco-plastic behavior of rock mass has been studied and the long-term rock mass loads as a result of relaxation and creep have been considered.

Effect of utilizing pressurized ring beam system in modern rock TBM: I. Numerical study (현대식 Rock TBM에서 가압형 링빔의 효과 연구: I. 수치해석적 연구)

  • Kwak, Yun-Suk;Kang, Gi-Don;Kim, Do-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.55-77
    • /
    • 2012
  • A Modern Rock TBM is a tunnel excavation method combining the conventional tunnelling method with the mechanized tunnelling method. It is a hybrid system that excavates a tunnel with TBM and supports the ground by ring beam, wire mesh, rock bolt, shotcrete, i.e., conventional tunnelling method. In the Modern Rock TBM, a ring beam is similar to a steel rib in NATM in the way that uses H-beam. But using a ring beam is more effective than a steel rib because it is installed in a closed-circle. Therefore, improving the performance of the ring beam is a key factor for achieving tunnel stability. In this respect, this study introduces a pressurized ring beam that might be functioning more effectively by confining convergence during tunnel excavation. In order to verify the effect of the pressurized ring beam, a three-dimensional numerical analysis was conducted. The numerical analysis confirms an increase in the minimum principal stress and reduction in the plastic strain that triggers excessive displacement. The analysis result also indicates a decrease in the relative displacement occurring after installing the ring beam, and expansion in spacing between the ring beams.

Numerical Analysis of tunnel overbreak influenced by delay time accuracy of detonator (뇌관의 시차 정밀도가 터널 여굴에 미치는 영향 수치해석)

  • An, Bong-Do;Kang, Dae-Woo
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2009.03a
    • /
    • pp.73-82
    • /
    • 2009
  • In order to find that how differences of delay time accuracy of ms,ds detonator applied to tunnel contour influences overbreak in tunnel blasting, it was analyzed using common program(Itasca CG, 2004)which was developed by individual factor method called "Partical Flow Code 2D(PFC2D). In result, overbreak and damage of country rock were reduced when the delay was more accurate than the inaccurate.

  • PDF

Comparison of the RMR Ratings by Tunnel Face Mappings and Horizontal Pre-borings at the Fault Zone in a Tunnel (터널 단층대에서 수평시추와 막장관찰에 의한 RMR값의 비교 분석)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.39-46
    • /
    • 2005
  • The RMR ratings, one by horizontal pre-boring in a tunnel and another by tunnel face mapping, are compared at the fault zone in a tunnel. Generally. the horizontal pre-borings were so effective as to forecast reasonably the supporting patterns after tunnel excavation. But the maximum difference in RMR ratings estimated by two methods was about 50 at a certain section of a tunnel. The differences were analyzed on each parameter of the RMR system: the rating differences were 24 in the condition of discontinuities, 15 in the RQD and 13 in the uniaxial compressive strength of rock. To minimize the gap between RMR by pre-borings and by face mappings, it is necessary to select the horizontal pre-boring location where tunnel stability could be critical and to evaluate in detail the sub-parameters of the condition of discontinuities.

Evaluation of Non-linear FEM Tunnel Analysis by using Hoek-Brown반s Insitu Rock Model (Hoek-Brown 암반모델을 이용한 비선형 유한요소 터널해석 및 평가)

  • Lee, Bong-Yeol;Kim, Gwang-Jin;Kim, Hak-Mun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.235-246
    • /
    • 1994
  • At pre-construction design stage, most of the design data are based on the site investigation results or property estimation which often does not provide satisfactory output for the tunnel analysis. Nonlinear FEM tunnel analysis was cariied out by Hoek-Brown model which is principly semi-empirical design method based on insitu rock descriptions, rock test results as well as field measurement data. The results of the analytical methods from Hoek-Brown model and Mohr-Coulomb model are compared with the sige measurement data from two-NATM tunnel construction sites. It was found that the Hoek-Brown model can be satisfactorily adopted as a feed back analysis technique in order to examin the safety of NATM tunnel at any construction stage.

  • PDF

Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters

  • Nikadat, Nooraddin;Marji, Mohammad Fatehi
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.269-288
    • /
    • 2016
  • The jointed rock mass behavior often plays a major role in the design of underground excavation, and their failures during excavation and in operation, are usually closely related to joints. This research attempts to evaluate the effects of two basic geometric factors influencing tunnel behavior in a jointed rock mass; joints spacing and joints orientation. A hybridized indirect boundary element code known as TFSDDM (Two-dimensional Fictitious Stress Displacement Discontinuity Method) is used to study the stress distribution around the tunnels excavated in jointed rock masses. This numerical analysis revealed that both the dip angle and spacing of joints have important influences on stress distribution on tunnel walls. For example the tensile and compressive tangential stresses at the boundary of the circular tunnel increase by reduction in the joint spacing, and by increase the dip joint angle the tensile stress in the tunnel roof decreases.

Groundwater Flow model of Drawdown and Recovery Due to Watertight Tunnel Excavation and Design Example for Lining (터널시공에 따른 지하수위 변화의 모델링과 이를 고려한 완전방수 터널의 라이닝 설계 예)

  • 남기천;이형원;배정식;나경웅
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.24-30
    • /
    • 1994
  • Although a dry-system tunnel is not good for reasons fo economy and construction, it has been applied to some tunnels under construction owing to the advantages of good long-term maintenance of tunnel, prevention of consolidation settlement due to the drawdown of groundwater, preservation of the ecosystem, cutailment of operation cost, and so on. The stability of groundwater and the change of the applied water pressure after water proofing were analysed by the finite element method. Using this result, an example of designing the secondary lining for the dry-system tunnel which is to be constructed in low-permeability hard rock was presented.

  • PDF

Ground Investigation and Characterization for Deep Tunnel Design (대심도 암반의 터널 설계를 위한 지반 조사와 특성화)

  • Yoon, Woon-Sang;Choi, Jae-Won;Park, Jeong-Hoon;Song, Kook-Hwan;Kim, Young-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.584-590
    • /
    • 2009
  • One of the critical design problems involved in deep tunnelling in brittle rock, is the creation of surface spalling damage and breakouts. If weak fault zone is developed in deep tunnel, squeezing problem is added to the problems. According to the results of ground investigation in the study area, hard granitic rockmass and distinguished high angle fault zone are distributed on the tunnel level over 400m depth. To analyse the probability of brittle failure and squeezing, ground characterization with special lab. and field test were carried out. By the results, probability of brittle failures like spalling and rock burst is very low. But squeezing may be probable, if weak fault zone observed surface and drill core is extended to designed tunnel level.

  • PDF