• Title/Summary/Keyword: rock strength

Search Result 1,152, Processing Time 0.024 seconds

Effects of Strain Rate and Water Saturation on the Tensile Strength of Rocks (변형률 속도 및 수분포화가 암석의 인장강도에 미치는 영향)

  • Jung, Woo-Jin
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.119-124
    • /
    • 2010
  • Hopkinson's effect tests were carried out for various strain rates on three different types of rock in both saturated and dry states in order to examine the effects of strain rate and water saturation on tensile strength. The tensile strength increased with the increase of the strain rate not only in dry state but also in saturated state. It was also especially recognizable that the dynamic tensile strength of rock in the dry state was proportional to approximately a one-third multiple of strain rate no matter what the type of rock. It was found that water saturation decreased tensile strength in the dry state of sandstone and tuff, both with high porosity, but no significant difference could be recognized between the dry and the saturated states of granite, which has a low porosity of 0.49%.

Research on Characteristics of Natural Joint with Low Roughness (낮은 거칠기를 갖는 자연절리면의 특성 연구)

  • 이수곤;양홍석;김부성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.745-750
    • /
    • 2000
  • The shear strength of rock discontinuities is very important in many rock engineering project including analysis of tunnel and slope. But shear strength of rock that acquired through discontinuity shear test is different from soil shear test and more complex. Shear strength is effected by the factors which are various, but it is the best influence of filling material and joint roughness. In this research, we studied shear strength characters of natural joint of phillite that was placed importance on joint roughness, JRC is less low than 8.

  • PDF

Analysis of Influence factors to Compressive and Tensile Strength of Basalt in Cheju Island (제주도 현무암의 압축 및 인장강도에 대한 영향요인 분석)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk;Kim, Jun-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.215-225
    • /
    • 2008
  • In order to investigate the influence factors to compressive and tensile strength of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area, and a series of uniaxial compressive strength test and Brazilian test were carried out. Especially, these tests were performed in consideration of the loading speed, the moisture content in rock sample, and the anisotropy of rock strength. The uniaxial compressive strength was increased gradually as the loading speed rose. The increasing quantity of uniaxial compressive strength had a difference in each rock types. Also, the strength was decreased with increasing the moisture contents in rock sample by pore water. As the result of test considering the anisotropy of rock strength, the compressive strength in condition of failure occurred parallel to stratified layer is decreased about 12-26% more than that in condition of failure occurred inclined to stratified layer.

Weathering Characteristics of Rock under Natural Environment and Strength Evaluation of Weathered Rock (자연환경하에서 암석의 풍화특성과 풍화암석의 강도평가)

  • Kang, Dae-Wan;Obara, Yuzo;Hirata, Atsuo;Kang, Seong-Seong
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.460-470
    • /
    • 2011
  • Wave velocity was measured to define the weathering characteristics of rock and the strength evaluation of weathered rock on a target of the Aso gravestones with various sizes under the natural environment. As a result, the size correction method which was changed sample of the different size to one of the same size for evaluating wave velocity was proposed, and also suggested the NET (Normalized Elapsed Time) as a new weathering index of rock. In addition, the strength of the weathered rock was estimated from the weathering classification of rock using the NET. Wave velocity of welded tuff was high and didn't show velocity degradation, on the other hand, one of andesite was low and showed velocity degradation. The degree of weathering between rocks of the different size is considered to be comparable, applying the NET based on the on the $V_p/V_o$-NET curve. Furthermore, the classification of rock weathering stages using the NET based on the $S_c/S_o$-NET curve was available, and the estimation of strength for the weathered rock was also possible.

Stability analysis of infinite rock slopes with varying disturbances based on the Hoek-Brown failure criterion

  • Dowon Park
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.53-63
    • /
    • 2023
  • Rock disturbance caused by blasting and stress relaxation is commonly observed during excavation. As the distance from the source of disturbance increases, the degree of disturbance decreases, and rock at a large depth does not experience disturbance. However, in stability analyses, a single value of disturbance is often applied to the entire rock mass, which leads to underestimated results. In this study, this modeling mistake is addressed by considering realistically varying rock disturbance. The safety of infinite slopes in a disturbed rock mass with a strength governed by the Hoek-Brown failure criterion is investigated based on the kinematic approach of limit analysis. The maximum disturbance is assigned to the outermost slope face because it is directly exposed to blasting damage and dilation, and the disturbance progressively decays with distance in the rock mass. The safety analysis results indicate that the assumption of uniform disturbance in the entire rock mass leads to underestimation of the rock strength and safety on infinite rock slopes. A critical slip surface appears to be within the disturbed rock layer as well as the interface between the disturbed upper rock and undisturbed lower rock.

The Pull-out Behavior of Rock Bolts According to Grout Strength during Rock Bolt Pull-out (록볼트 인발 시 그라우트 강도에 따른 인발 거동)

  • Seongmin Jang;Hyuksang Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.13-22
    • /
    • 2023
  • In this paper, through experimental research, the period when rock bolts exert support effects is presented as grout strength and through numerical analysis, the rock bolt pull-out behavior according to ground conditions and strength reduction factors is analyzed. As a result, it is determined that rock bolts exhibit their reinforcing effect at a grout strength of 5 MPa (cured for 18 hours). The influence of the boundary interface strength reduction factor was found to be significant for rock bolt displacement in weak ground conditions, for shear stress between grout and ground in highly elastic ground conditions, and for grout stress in all ground conditions. These findings are expected to contribute to the establishment of specific standards for rock bolt testing and numerical analysis, and to facilitate improved design and implementation of rock bolt reinforcement.

Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Wu, Yongjin;He, Jun
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Strength anisotropy is a typical feature of thin-bedded rock masses and their strength will be degraded subjected to water immersion effect. Such effect is crucial for the operation of hydropower plant because the impoundment lifts the water level of upstream reservoir and causes the rock mass of nearby slopes saturated. So far, researches regarding mechanical property of natural thin-bedded rock masses and their strength variation under water immersion based on field test method are rarely reported. This paper focuses on a thin-bedded stratified rock mass and carries out field test to investigate the mechanical property and strength variation characteristics. The field test is highlighted by samples which have a large shear dimension of 0.5 m*0.5 m, representing a more realistic in-situ situation than small size specimen. The test results confirm the anisotropic nature of the concerned rock mass, whose shear strength of host rocks is significantly larger than that of bedding planes. Further, the comparison of shear strength parameters of the thin-bedded rock mass under natural and saturated conditions show that for both host rocks and bedding planes, the decreasing extent of cohesion values are larger than friction values. The quantitative results are then adopted to analyze the influence of reservoir impoundment of a hydropower plant on the surrounding rock mass stability of diversion tunnels which are located in the nearby slope bank. It is evaluated that after reservoir impoundment, the strength degradation induced incremental deformations of surrounding rock mass of diversion tunnels are small and the stresses in lining structure are acceptable. It is therefore concluded that the influences of impoundment are small and the stability of diversion tunnels can be still achieved. The finings regarding field test method and its results, as well as the numerical evaluation conclusions are hoped to provide references for rock projects with similar concerns.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.