• 제목/요약/키워드: rock stability

검색결과 1,009건 처리시간 0.026초

화산쇄설암 사면의 안정 특성 (The Characteristice of Safety on a Slope of Pyroclastic Rock)

  • 김병곤;박성권;최길현;백승철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.557-560
    • /
    • 2008
  • In this paper, it discusses about the stability of rock slope of pyroclastic rock, which can easily meet at construction site. Basically carry out the investigation about the development of a surface of discontinuity, too. With that, it refers to the basic groups of sedimentary rock, treats of general details about investigation of rock slope and stability analysis, and discusses general characteristics and stability analysis case study about rock slope of pyroclastic rock. Achieved basic geological investigation on rock slope of pyroclasic rock, and examine the stability of slope by doing limit equilibrium and geometric stability analysis due to the result of investigation. It is considered to be able to accumulate many data about slope design of pyroclastic rock hereafter estimating degrees of rock mass properties of pyroclastic rock quantitatively.

  • PDF

단양 석회석 광산터널의 암반 평가 및 안정성 연구 (Study on the stability of tunnel and rock mass classification in Danyang limestone quarry)

  • 신희순
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.131-143
    • /
    • 1996
  • In-situ survey and laboratory rock test were carried out for rating rock mass around the tunnel that some failures had been occurred in Danyang limestone quarry. For rating rock mass, several methods such as RMR, Q-system, rock strength etc. were applied. The stability analysis on tunnel was evaluated by numerical method FLAC. And The block theory using streographic projection was also applied for stability analysis. The 3-4 major discontinuity sets are distributed in rock mass around tunnel.

  • PDF

터널천단변위와 암석 또는 암반의 일축압축강도를 이용한 시공 중인 터널의 예비 안정성 평가 (The Pre-Evaluation of Stability during Tunnel Excavation using Unconfined Compression Strength of Intact Rock or Rock Mass and Crown Settlement Data)

  • 박영화;문홍득;하만복
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.27-32
    • /
    • 2015
  • PURPOSES : It is difficult to estimate tunnel stability because of lack of timely information during tunnel excavation. Tunnel deformability refers to the capacity of rock to strain under applied loads or unloads during tunnel excavation. This study was conducted to analyze a methods of pre-evaluation of stability during tunnel construction using the critical strain concept, which is applied to the results of tunnel settlement data and unconfined compression strength of intact rock or rock mass at the tunnel construction site. METHODS : Based on the critical strain concept, the pre-evaluation of stability of a tunnel was performed in the Daegu region, at a tunnel through andesite and granite rock. The critical strain concept is a method of predicting tunnel behavior from tunnel crown settlement data using the critical strain chart that is obtained from the relationship between strain and the unconfined compression strength of intact rock in a laboratory. RESULTS : In a pre-evaluation of stability of a tunnel, only actually measured crown settlement data is plotted on the lower position of the critical strain chart, to be compared with the total displacement of crown settlement, including precedent settlement and displacement data from before the settlement measurement. However, both cases show almost the same tunnel behavior. In an evaluation using rock mass instead of intact rock, the data for the rock mass strength is plotted on the lower portion of the critical strain chart, as a way to compare to the data for intact rock strength. CONCLUSIONS : From the results of the pre-evaluation of stability of the tunnel using the critical strain chart, we reaffirmed that it is possible to promptly evaluate the stability of a tunnel under construction. Moreover, this research shows that a safety evaluation using the actual instrumented crown settlement data with the unconfined compression strength of intact rock, rather than with the unconfined compression strength of a rock mass in the tunnel working face, is more conservative.

암반사면의 안정성 평가 및 적용에 관한 연구 (A Study on the Stability Assessment and Application of Rock Slope)

  • 안종필;박주원;오수동
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.177-184
    • /
    • 1999
  • In general tile evaluation process of rock slope stability is an ambiguous system which is made up of ideas subjected to practical experience of an expert. This paper aims to propose more effective methods that helps engineers to evaluate the stability of rock slope by using RMR(Rock Mass Rating for the Geomechanics Classification) and Stereo-graphic Projection and Fuzzy Approximate Reasoning Concept. the result of this paper is that a rational evaluation of rock slope stability and countermeasures can be achieved thorough RMR. and Stereo-graphic Projection and Fuzzy Approximate Reasoning Concept.

  • PDF

Stability analysis of infinite rock slopes with varying disturbances based on the Hoek-Brown failure criterion

  • Dowon Park
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.53-63
    • /
    • 2023
  • Rock disturbance caused by blasting and stress relaxation is commonly observed during excavation. As the distance from the source of disturbance increases, the degree of disturbance decreases, and rock at a large depth does not experience disturbance. However, in stability analyses, a single value of disturbance is often applied to the entire rock mass, which leads to underestimated results. In this study, this modeling mistake is addressed by considering realistically varying rock disturbance. The safety of infinite slopes in a disturbed rock mass with a strength governed by the Hoek-Brown failure criterion is investigated based on the kinematic approach of limit analysis. The maximum disturbance is assigned to the outermost slope face because it is directly exposed to blasting damage and dilation, and the disturbance progressively decays with distance in the rock mass. The safety analysis results indicate that the assumption of uniform disturbance in the entire rock mass leads to underestimation of the rock strength and safety on infinite rock slopes. A critical slip surface appears to be within the disturbed rock layer as well as the interface between the disturbed upper rock and undisturbed lower rock.

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

Influence of interaction between coal and rock on the stability of strip coal pillar

  • Gao, W.
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.151-157
    • /
    • 2018
  • The constrained conditions of roof and floor for the coal pillar affect the strength of coal pillar very seriously. To analyze the influence of rock mass for the roof and floor on the stability of coal pillar comprehensively, one method based on the mechanical method for the composite rock mass was proposed. In this method, the three rock layers of roof, floor and coal pillar are taken as the bedded composite rock mass. And the influence of rock mass for the roof and floor on the elastic core of coal pillar has been analyzed. This method can obtain not only the derived stress by the cohesive constraining forces for the coal pillar, but also the derived stress for the rock mass of the roof and floor. Moreover, the effect of different mechanical parameters for the roof and floor on the stability of coal pillar have been analyzed systematically. This method can not only analyze the stability of strip coal pillar, but also analyze the stability of other mining pillars whose stress distribution is similar with that of the strip coal pillar.

발파굴착의 암반손상이 터널안정성에 미치는 영향분석 (Effect of Rock Damage Induced by Blasting on Tunnel Stability)

  • 이인모;윤현진;김동현;이상돈;박봉기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.681-688
    • /
    • 2003
  • Rock damage induced by blasting can not be avoided during tunnel construction and may affect tunnel stability. But the mutual interaction between tunnel blasting design and tunnel stability design is generally not considered. Therefore this study propose a methodology to take into considration the results of the blasting damage in tunnel stability design. Rock damage is evaluated by dynamic numerical analysis for the most common blasting pattern adopted in road tunnel. Damage zone is determined by using the continuum damage model which is expressed as a function of volumetric strain. And the damage effect is taken into account by the damaged rock stiffness and the damaged failure criteria in tunnel stability assessment. The extend of plastic zone and deformation increase compared to the case of not considering blast-induced rock damage.

  • PDF

불연속면을 고려한 암반의 안정변형해석 (Stability and Deformation Analysis Considering Discontinuities in Rock Mass)

  • 황재윤
    • 터널과지하공간
    • /
    • 제25권1호
    • /
    • pp.68-75
    • /
    • 2015
  • 암반에는 단층 절리 층리 균열 편리 벽개 등 불연속면이 포함되어 있다. 따라서, 불연속면을 포함한 암반의 역학적 거동은 연속체와는 다르게 불연속면의 역학적 거동에 좌우된다. 본 연구에서는 불연속면을 고려한 암반의 안정변형해석기법을 제안하고, 암반 붕괴재난현장에 적용했다. 암반 불연속면을 고려하여 평사투영법에 의한 안정해석과 개별절리요소를 포함한 유한요소법에 의한 변형해석 프로그램을 개발하여, 실제 암반 붕괴 재난현장 지역에서의 해석결과와 비교 및 검토를 하였다. 암반 현장에 적용하여 결과를 비교 검토함으로써, 암반의 파괴 거동 해석에 있어서 개발한 불연속면을 고려한 암반의 안정변형해석법의 적용성에 대한 검증을 하였다.

안동시 OO지역 암반사면의 안정해석에 관한 연구 (A Study on the Stability Analysis of Rock Slope located near Andong-si)

  • 박성권;김기범;정동영;이윤규;백승철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.561-564
    • /
    • 2008
  • Rock slope had been slope failure due to geological and physical things over time. In this paper, it discusses rock slope stability analysis which was concerned about additional slope failure located near the Andong-si. Initially, achieved basic geological investigation and field test about rock slope, examine the stability of rock slope by doing limit equilibrium method and stereographic projection about 5 slopes.

  • PDF