• 제목/요약/키워드: rock mass deformation

검색결과 153건 처리시간 0.026초

불연속면을 고려한 암반의 안정변형해석 (Stability and Deformation Analysis Considering Discontinuities in Rock Mass)

  • 황재윤
    • 터널과지하공간
    • /
    • 제25권1호
    • /
    • pp.68-75
    • /
    • 2015
  • 암반에는 단층 절리 층리 균열 편리 벽개 등 불연속면이 포함되어 있다. 따라서, 불연속면을 포함한 암반의 역학적 거동은 연속체와는 다르게 불연속면의 역학적 거동에 좌우된다. 본 연구에서는 불연속면을 고려한 암반의 안정변형해석기법을 제안하고, 암반 붕괴재난현장에 적용했다. 암반 불연속면을 고려하여 평사투영법에 의한 안정해석과 개별절리요소를 포함한 유한요소법에 의한 변형해석 프로그램을 개발하여, 실제 암반 붕괴 재난현장 지역에서의 해석결과와 비교 및 검토를 하였다. 암반 현장에 적용하여 결과를 비교 검토함으로써, 암반의 파괴 거동 해석에 있어서 개발한 불연속면을 고려한 암반의 안정변형해석법의 적용성에 대한 검증을 하였다.

동축 케이블을 이용한 시간영역 반사법의 암반변위 계측에의 적용 (Application of Time Domain Reflectometry to the Monitoring or Rock Mass Deformation with Coaxial Cable)

  • 정슬람;정소걸;정현기;박철환;박철환;이희근
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.306-315
    • /
    • 1996
  • This paper presents an application of the TDR(Time Domain Reflectometry) to the monitoring of the deformation of rock mass with grouted coaxial cables through laboratory tests. The grouted cable can easily deform together with the rock mass movements, and the deformed cable loses its original capacitance and the reflected waveform produced along the deformed cable consequently represents a change of voltage pulse. Therefore, it is possible to monitor the deformation of rock mass by measuring the changes in these reflection signatures. Shear test of the cemented mortar containing a specimen of coaxial cable showed that the shear deformation correlated linearly with the reflection coefficient, so the TDR was effective to monitor the displacement of the rock mass. Bending test were carried out in order to determine the influence of the crooked cables on the monitoring of rock mass movements. Controlled cirmping and shearing test upon a cable of 50 m long, 12.7 mm diameter showed not only the fact that the reflection amplitudes decreased as the cable length increased but also the proper crimping depth, width and interval between two adjacent crimps. Two coaxial cables-one 100 m long and other 175m long-were installed and grouted into the separate boreholes drilled in a sedimentary formation. The behavior of the cable was monitored with metallic TDR cable tester to measure rock mass deformation based on the interpretative techniques developed through laboratory tests.

  • PDF

대형평판재하시험의 지중응력 측정결과를 이용한 연암의 변형계수 산정 (Estimation of deformation modulus for rock mass using stress distribution under ground in Large Plate Load Test)

  • 박원태;이민희;최용규;김석찬;김정환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.539-545
    • /
    • 2010
  • The field plate test has a good potential for determining since it measures both plate pressure and settlement. The deformation modulus of rock mass is differently measured for status of structures. The values of deformation modulus are obtained from laboratory test (uniaxial and triaxial test) and field test (pressuremeter test). Plate load test should be conducted by different loading plate sizes for geological structure of rock mass and scale of structures. In this paper, large plate load tests were performed to predict of structure's behavior and evaluate the ultimate bearing capacity of the foundation on soft rock. Simultaneously, deformation modulus of rock mass was estimated by back analysis of stresses measured in field test under rock mass. Finally, we verified the validation of deformation modulus of rock mass through result of large plate load test and numerical simulation.

  • PDF

Analysis of the mechanical properties and failure modes of rock masses with nonpersistent joint networks

  • Wu, Yongning;Zhao, Yang;Tang, Peng;Wang, Wenhai;Jiang, Lishuai
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.281-291
    • /
    • 2022
  • Complex rock masses include various joint planes, bedding planes and other weak structural planes. The existence of these structural planes affects the mechanical properties, deformation rules and failure modes of jointed rock masses. To study the influence of the parameters of a nonpersistent joint network on the mechanical properties and failure modes of jointed rock masses, synthetic rock mass (SRM) technology based on discrete elements is introduced. The results show that as the size of the joints in the rock mass increases, the compressive strength and the discreteness of the rock mass first increase and then decrease. Among them, the joints that are characterized by "small but many" joints and "large and clustered" joints have the most significant impact on the strength of the rock mass. With the increase in joint density in the rock mass, the compressive strength of rock mass decreases monotonically, but the rate of decrease gradually decreases. With the increase in the joint dip angle in rock mass, the strength of the rock mass first decreases and then increases, forming a U-shaped change rule. In the analysis of the failure mode and deformation of a jointed rock mass, the type of plastic zone formed after rock mass failure is closely related to the macroscopic displacement deformation of the rock mass and the parameters of the joints, which generally shows that the location and density of the joints greatly affect the failure mode and displacement degree of the jointed rock mass. The instability mechanism of jointed surrounding rock is revealed.

지하 대공동의 3차원 굴착거동에 관한 연구 (Three Dimensional Behaviour of the Rock Mass around a Large Rock Cavern during Excavation)

  • 이영남;서영호;주광수
    • 터널과지하공간
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 1998
  • This paper presents the results of deformation measurement and numerical analysis carried out to study the behaviour of the rock mass around large underground oil storage caverns. Displacements during excavation have been monitored using borehole extensometers which had been installed before the excavation of caverns proceeded. Numerical analysis has been carried out to examine the three-dimensional behaviour of rock and the face advance effect. The input parameters for this analysis were determined from the results of laboratory and field tests. The deformation modulus of the rock mass was determined from plate loading test at the site and in-situ stresses were measured from the overcoring method with USBM deformation gauge. The results from this study gave a clear picture for three-dimensional behaviour of the rock mass, hence would be used for the optimum design.

  • PDF

다중절리 암반지층에서의 터널변위 산정을 위한 변형계수에 관한 연구 (A Study on the Deformation Modulus for Tunnel Displacement Assessment in Multi-Jointed Rock Mass)

  • 손무락;이원기
    • 한국지반환경공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.17-26
    • /
    • 2017
  • 절리가 형성된 암반지층에서의 터널굴착은 터널굴착 선을 따라 변위를 유발시키며 이러한 변위값의 산정은 터널의 안정성과 소요공간을 확보하는 것과 관련하여 매우 중요한 사항이다. 터널변위는 지반의 변형계수와 직접적으로 관련되므로 이를 파악하는 것이 무엇보다도 중요하다. 그렇지만, 터널이 건설되는 대부분의 암반지층은 일반적으로 절리가 형성되어 있어서 단순히 균질한 등가탄성매질에 근거하여 절리형성 암반지층의 변형계수를 파악할 수는 없다. 왜냐하면 절리형성 암반지층의 변형계수는 암석의 종류뿐만 아니라 절리조건에 의해서 큰 영향을 받기 때문이다. 따라서 본 연구에서는 터널굴착 조건에서 다양한 절리 및 암석조건을 고려한 암반지층의 변형계수 변화를 조사하였으며 이를 위하여 수치해석적 매개변수연구를 수행하였다. 이를 통한 본 연구의 결과는 기존의 경험적인 방법들과 상호 비교되었으며, 또한 다양한 절리암반을 고려한 변형계수 변화표의 형태로서 제시되었다.

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.

지반정수산정을 위한 경험적 암반평가기법과 상관성 (Empirical Equations for Rock Mass Classifications and Rock Property Evaluations)

  • 신중호;신희순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.79-86
    • /
    • 2002
  • Rock mass classifications form the back bone of the empirical design approach and are widely employed in rock engineering. In this paper the inter-relations were discussed among RMR, Q-system, RCR, N, M-RMR, RMi, and L-RMR. Several relationships for the assessment of the modulus of deformation of rock mass, Poisson's ratio, uniaxial compressive strength, tensile strength, cohesion and internal friction angle were also analysed and suggested.

  • PDF

측정된 터널변위에 의한 암반 변형계수의 결정 (Determination of Deformation Modulus of Rock Mass with Measured Tunnel Displacement)

  • 박재우;박은규;김교원
    • 지질공학
    • /
    • 제17권4호
    • /
    • pp.655-664
    • /
    • 2007
  • 터널의 설계 시 변형계수, 포아송비, 내부마찰각, 점착력 등의 지반특성치가 이용되는데, 이 중 변형계수는 터널변위에 가장 큰 영향을 준다. 그러나 암반의 변형계수는 불연속면과 시료크기 등의 영향으로 시험으로 결정하기 매우 어렵기 때문에 주로 경험적인 방법에 의존하고 있다. 본 연구에서 현장조사, 실내시험, 및 시추조사를 통해 얻은 지반특성치에 근거하여 수치해석을 실시한 결과, 계산된 변위와 현장 계측치가 일치하지 않았다. 그래서 변형계수를 변화시키면서 반복해석을 실시하여 변형계수와 터널변위의 상관성을 구하였으며, 상관관계식은 2 터널에서 얻어진 자료에 근거하여 적합성을 검증하였는데, 이 현장에서는 암반의 변형계수가 암석 탄성계수의 약 $30{\sim}40%$정도인 것으로 보인다.

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.