• Title/Summary/Keyword: rock dynamic

Search Result 344, Processing Time 0.02 seconds

Dynamic Analysis of Mooring Dolphin System Considering Soil Properties (지반의 강성특성을 고려한 지반-돌핀구조계의 동적해석)

  • Yi, Jin-Hak;Oh, Se-Boong;Yun, Chung-Bang;Hong, Sup;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.19-30
    • /
    • 1998
  • In this paper, the dynamic analysis of a dolphin system for mooring a floating structure such as barge mounted plant is studied. The characteristics of the soil-pile system are simplified by a set of equivalent spring elements at the mudline. To evaluate the equivalent spring constants, the finite difference method is used. Since the characteristics of the soil-pile system are nonlinear in case of soft foundation, the nonlinear dynamic analysis technique is needed. The Newmark $beta$ method incorporating the modified Newton-Raphson method(initial stiffness method) is used. A numerical analysis is performed on two mooring dolphin systems on soft foundation and rock foundation. In case of the rock foundation, the characteristics are found to be nearly linear, so the linear dynamic analysis may be sufficient to consider the foundation effect. But in case of soft foundation, the non-linearity of the foundation appears to be very signigicant, so the nonlinear dynamic analysis si needed.

  • PDF

Safety Evaluation of Rock-Fill Dam by Seismic(MASW) Method (사력댐의 안정성평가를 위한 표면파탐사(MASW)의 활용성)

  • 정해상;오영철;방돈석;안상로
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.359-364
    • /
    • 2003
  • For safety evaluation of a rock-fill dim, it is often necessary to investigate spatial distribution of weak zones such as fracture. Both DC-resistivity survey and seismic(SASW) method are usually used for the purpose. Recently, Multichannel analysis of surface waves(MASW) method which makes up for the weak point of SASW method is developed and the site examination which is simple came to be possible comparatively. In order to obtain 2-D shear-wave velocity(Vs) profile along the dam axis that can be associated with dynamic properties of filled materials, MASW method was adapted. Then, DC-resistivity survey and drilling survey were performed to compare with each results. We confirmed that the MASW method and DC-resistivity survey show complementary result that corresspond with drilling result. Therefore, MASW method is an efficient method for dynamic characterization of dam-filling materials and also the combination of related methods such as DC-resistivity can lead to an effective safety evaluation of rock-fill dam.

  • PDF

탄성정수 및 입사파형의 변화에 따른 암반 내 균열전파양상에 관한 수치해석적 연구

  • Park, Seung-Hwan;Jo, Sang-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • Crack-controlled method which utilizes the dynamic energy such as explosives and propellent gases have been applied to the development of mineral resource and oil and civil engineering. It is necessary to consider the fracture processes associated with the material properties and external forces to control crack propagation using borehole pressure. To investigate the influence of the applied borehole pressure waveform on the crack propagation in rock masses having different material properties, a no-free surface model was used, consisting of a borehole in rock with a continuous boundary. Loading rates ranging from 1 to 100MPa/${\mu}s$ with different rock mass properties was employed to investigate the loading rate dependency of fracture patterns in the rock mass.

  • PDF

A Study of Vibrational Characteristics of Underground Structures through Rock-Structure Interaction Analysis (주변암반과의 상호거동 해석을 통한 지하구조물의 진동특성에 관한 연구)

  • 김문겸;이재영;김용규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.229-234
    • /
    • 1997
  • The dynamic behavior of underground structures is complex due to the effects of vibrational characteristics of the structure and the rock. In this study, dynamic displacement responses at the structure surface by the elastic stress waves are considered as the vibrational characteristics, and evaluated by the form of the frequency spectrum. The variation of the vibrational characteristic is simulated by numerical analysis at the case of the structure has internal defections. The results reveals the possibility of the experimental detection of void existence and size. Furthermore, the verification of the dynamic response can be used for rating the stability of a tunnel.

  • PDF

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Characteristics of crater formation due to explosives blasting in rock mass

  • Jeon, Seokwon;Kim, Tae-Hyun;You, Kwang-Ho
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.329-344
    • /
    • 2015
  • Cratering tests in rock are generally carried out to identify its fragmentation characteristics. The test results can be used to estimate the minimum amount of explosives required for the target volume of rock fragmentation. However, it is not easy to perform this type of test due to its high cost and difficulty in securing the test site with the same ground conditions as the site where blasting is to be performed. Consequently, this study investigates the characteristics of rock fragmentation by using the hydrocode in the platform of AUTODYN. The effectiveness of the numerical models adopted are validated against several cratering test results available in the literature, and the effects of rock mass classification and ground formation on crater size are examined. The numerical analysis shows that the dimension of a crater is increased with a decrease in rock quality, and the formation of a crater is highly dependent on a rock of lowest quality in the case of mixed ground. It is expected that the results of the present study can also be applied to the estimation of the level and extent of the damage induced by blasting in concrete structures.

Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS

  • Zaid, Mohammad
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.505-518
    • /
    • 2021
  • The present paper has been carried out to understand the effects of impact loading on the rock tunnels, constructed in different region corresponding to varying unconfined compressive strength (UCS), through finite element method. The UCS of rockmass has substantial role in the stability of rock tunnels under impact loading condition due to falling rocks or other objects. In the present study, Dolomite, Shale, Sandstone, Granite, Basalt, and Quartzite rocks have been taken into consideration for understanding of the effect of UCS that vary from 2.85 MPa to 207.03 MPa. The Mohr-Coulomb constitutive model has been considered in the present study for the nonlinear elastoplastic analysis for all the rocks surrounding the tunnel opening. The geometry and boundary conditions of the model remains constant throughout the analysis and missile has 100 kg of weight. The general hard contact has been assigned to incorporate the interaction between different parts of the model. The present study focuses on studying the deformations in the rock tunnel caused by impacting load due to missile for tunnels having different concrete grade, and steel grade. The broader range of rock strength depicts the strong relationship between the UCS of rock and the extent of damage produced under different impact loading conditions. The energy released during an impact loading simulation shows the variation of safety and serviceability of the rock tunnel.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa;Lei, Weidong;Chen, Wenqin
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-364
    • /
    • 2022
  • This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

A Numerical Study on Shear Behavior of the Interface between Blasted Rock and Concrete (발파 암반-콘크리트 경계면에서의 전단거동특성에 대한 수치해석적 연구)

  • Min, Gyeong-Jo;Ko, Young-Hun;Fukuda, Daisuke;Oh, Se-Wook;Kim, Jeong-Gyu;Chung, Moon-Kyung;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.26-35
    • /
    • 2019
  • In designing a gravity-type anchorage of earth-anchored suspension bridge, the contact friction between a blasted rock mass and the concrete anchorage plays a key role in the stability of the entire anchorage. Therefore, it is vital to understand the shear behavior of the interface between the blasted rock mass and concrete. In this study, a portable 3D LiDAR scanner was utilized to scan the blasted bottom surfaces, and rock surface roughness was quantitatively analyzed from the scanned profiles to apply to 3D FEM modelling. In addition, based on the 3D FEM model, a three-dimensional dynamic fracture process analysis (DFPA-3D) technique was applied to study on the shear behavior of the interface between blasted rock and concrete through direct shear tests, which was analyzed under constant normal load (CNL). The effects of normal stress and the joint roughness on shear failure behavior are also analyzed.