• Title/Summary/Keyword: rock cavern

Search Result 158, Processing Time 0.025 seconds

Effects of Hydrological Condition on the Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반 공동 열에너지저장소 주변 암반의 수리적 조건에 따른 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Lee, Hang Bok;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.168-185
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a large-scale high-temperature cavern thermal energy storage (CTES) at a shallow depth has been investigated, and the effects of hydrological conditions such as water table and rock permeability on the behavior have been examined. The liquid saturation of ground water around a storage cavern may have a small impact on the overall heat transfer and mechanical behavior of surrounding rock mass for a relatively low rock permeability of $10^{-17}m^2$. In terms of the distributions of temperature, stress and displacement of the surrounding rock mass, the results expected from the simulation with the cavern below the water table were almost identical to that obtained from the simulation with the cavern in the unsaturated zone. The heat transfer in the rock mass with reasonable permeability ${\leq}10^{-15}m^2$ was dominated by the conduction. In the simulation with rock permeability of $10^{-12}m^2$, however, the convective heat transfer by ground-water was dominant, accompanying the upward heat flow to near-ground surface. The temperature and pressure around a storage cavern showed different distributions according to the rock permeability, as a result of the complex coupled processes such as the heat transfer by multi-phase flow and the evaporation of ground-water.

Field Measurements and Numerical Analysis on the Efficiency of Water Curtain Boreholes in Underground Oil Storages (지하 유류비축기지 수벽공의 효율에 관한 현장계측 및 수치 해석 연구)

  • 이경주;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 1998
  • This study was performed to suggest to suggest suitable design conditions of water curtain system through analysis on pressure down in boreholes by hydraulic tests carried out I construction fields for underground oil storages. The influence by hydraulic conductivities of rock mass around boreholes on pressure down in boreholes was analysed. The relationship between array of boreholes and their pressure down was also analysed. Groundwater flow analysis on crude oil and LPG storages was carried out to evaluate results of field tests and to investigate distribution of hydraulic gradient in rock mass around cavern using finite difference method. As the results, hydraulic tests showed that pressure down in boreholes was inverse proportional to the hydraulic conductivity of surrounding rock mass. The rate of pressure down of boreholes was not influenced by water curtain system more than 20m over cavern and was proportional to installation interval of boreholes. The hydraulic gradient in rock mass around cavern was proportional to distance and interval of boreholes and its value was not satisfactory to oil tightness condition in case of no water curtain system.

  • PDF

Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Qin, Yang;Li, Peng;Li, Yujie
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.399-413
    • /
    • 2018
  • This paper addresses the issue of field measurement of excavation damage zone (EDZ) and its numerical simulation method considering both excavation unloading and blasting load effects. Firstly, a 2000 m-deep rock cavern in China is focused. A detailed analysis is conducted on the field measurement data regarding the mechanical response of rock masses subjected to excavation and blasting operation. The extent of EDZ is revealed 3.6 m-4.0 m, accounting for 28.6% of the cavern span, so it is significantly larger than rock caverns at conventional overburden depth. The rock mass mechanical response subjected to excavation and blasting is time-independent. Afterwards, based on findings of the field measurement data, a numerical evaluation method for EDZ determination considering both excavation unloading and blasting load effects is presented. The basic idea and general procedures are illustrated. It features a calibration operation of damage constant, which is defined in an elasto-plastic damage constitutive model, and a regression process of blasting load using field blasting vibration monitoring data. The numerical simulation results are basically consistent with the field measurement results. Further, some issues regarding the blasting loads, applicability of proposed numerical method, and some other factors are discussed. In conclusion, the field measurement data collected from the 2000 m-deep rock cavern and the corresponding findings will broaden the understanding of tunnel behavior subjected to excavation and blasting at great depth. Meanwhile, the presented numerical simulation method for EDZ determination considering both excavation unloading and blasting load effects can be used to evaluate rock caverns with similar characteristics.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

Design of initial support required for excavation of underground cavern and shaft from numerical analysis

  • Oh, Joung;Moon, Taehyun;Canbulat, Ismet;Moon, Joon-Shik
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • Excavation of underground cavern and shaft was proposed for the construction of a ventilation facility in an urban area. A shaft connects the street-level air plenum to an underground cavern, which extends down approximately 46 m below the street surface. At the project site, the rock mass was relatively strong and well-defined joint sets were present. A kinematic block stability analysis was first performed to estimate the required reinforcement system. Then a 3-D discontinuum numerical analysis was conducted to evaluate the capacity of the initial support and the overall stability of the required excavation, followed by a 3-D continuum numerical analysis to complement the calculated result. This paper illustrates the application of detailed numerical analyses to the design of the required initial support system for the stability of underground hard rock mining at a relatively shallow depth.

Mechanical Stability Analysis of a High-Level Waste Repository for Determining Optimum Cavern and Deposition Hole Spacing (고준위폐기물 처분장의 최적 공동간격 및 처분공간격을 결정하기 위한 역학적 안정성 해석)

  • 박병윤;권상기
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.237-248
    • /
    • 2000
  • Based on the preliminary results from the therm analysis, which is currently carrying, three-dimensional computer simulations using a finite element code, ABAQUS Ver. 5.8, were designed to determine the mechanically stable cavern and deposition hole spacing. Linear elastic modeling for the cases with different cavern and deposition hole spacing were carried out under three different in situ stress conditions. From the simulations, the response of the rock to the stress redistribution after the excavation of the openings could be investigated. Also the optimum cavern and deposition hole spacing could be estimated based on the factor of safety. When the in situ stress determined from the actual stress measurements in Korea were used, the case with cavern spacing of 40m and deposition hole spacing of 3m was in very stable condition, because the factor of safety was calculated as 3.42., When the in situ stress conditions for Sweden and Canada were used, the previous case, they seem to be in stable condition, since the factors of safety are still higher than 1.0. From these results, it was concluded that the rock will not fail even after the stress redistribution.

  • PDF

Investigation on the Technical Characteristics and Cases of Salt Cavern for Large-Scale Hydrogen Storage (대규모 수소 저장을 위한 암염 공동 저장 기술 특성 및 적용 사례 분석)

  • Seonghak Cho;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.7-16
    • /
    • 2024
  • This study presents investigation on the technical characteristics and field cases of the salt cavern storage method for large-scale hydrogen storage. The salt cavern storage method enables effective hydrogen storage compared to other methods due to the low porosity and permeability of the rock salt that constitutes the cavern, which is not likely to leak and requires a small amount of cushion gas for operation. In addition, there is no chemical reaction between rock salt and hydrogen, and multiple injection/withdrawl cycles can be performed making it effective for peak shaving and short-term storage. The salt cavern is formed in three stages: leaching, debrining, and filling, and leakage tests are conducted to ensure stable operation. Field applications are currently performing to meet industrial demand in the surrounding area of four sites in the UK and Texas, USA, and salt cavern operation is being prepared for energy storage in European countries such as Germany and France. The investigated results in this study can be utilized as a basic guideline for the design of future hydrogen storage projects.

A REVIEW OF THE ROCK MECHANICAL AND ENGINEERING GEOLOGICAL RESEARCH AT GJOVIK OLYMPIC CAVERN (GJOEVIK올림픽 경기장(암반역학 및 지질공학 분야))

  • Barton, N.;By, T.L.;Chryssanthakis, P.;Tunbridge, L.;Kristiansen, J.;Loset, F.;Bhasin, R.K.;Westerdahl, H.;Vik, G.;Myrvang, A.;Hansen, S.E.;Lv, Ming;Stjern, G.;Ruistven, H.;Kjorholt, H.;Lee, M.S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10b
    • /
    • pp.235-247
    • /
    • 1993
  • The 62 m span Olympic lee Hockey cavern in Gjovik, Norway, is located in jointed gneiss of average RaD = 70% and has a rock cover of only 25 to 50m, thus posing challenging design p problems. The investigations prior to construction included two types of stress measurements, cross-hole seismic tomography, special coe logging, Q-system classification and numerical modelling with UDEC-BB. Predicted maximum deformations were 4 to 8 mm; surprisingly small due to the high horizontal stresses recorded. Extensometer (MPBX) installations from the surface prior to construction, precision surface levelling and MPBX installed from inside the cavern give a combined measure of maximum deformations in the range 7 to 8 mm with the 62 m span fully e excavated, and three adjacent caverns for the Postal Services also completed.

  • PDF

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.