DOI QR코드

DOI QR Code

Effects of Hydrological Condition on the Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage

암반 공동 열에너지저장소 주변 암반의 수리적 조건에 따른 열-수리-역학적 연계거동 분석

  • 박정욱 (한국지질자원연구원 지구환경연구본부) ;
  • ;
  • 이항복 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 신중호 (한국지질자원연구원) ;
  • 박의섭 (한국지질자원연구원 지구환경연구본부)
  • Received : 2015.03.10
  • Accepted : 2015.04.21
  • Published : 2015.04.30

Abstract

The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a large-scale high-temperature cavern thermal energy storage (CTES) at a shallow depth has been investigated, and the effects of hydrological conditions such as water table and rock permeability on the behavior have been examined. The liquid saturation of ground water around a storage cavern may have a small impact on the overall heat transfer and mechanical behavior of surrounding rock mass for a relatively low rock permeability of $10^{-17}m^2$. In terms of the distributions of temperature, stress and displacement of the surrounding rock mass, the results expected from the simulation with the cavern below the water table were almost identical to that obtained from the simulation with the cavern in the unsaturated zone. The heat transfer in the rock mass with reasonable permeability ${\leq}10^{-15}m^2$ was dominated by the conduction. In the simulation with rock permeability of $10^{-12}m^2$, however, the convective heat transfer by ground-water was dominant, accompanying the upward heat flow to near-ground surface. The temperature and pressure around a storage cavern showed different distributions according to the rock permeability, as a result of the complex coupled processes such as the heat transfer by multi-phase flow and the evaporation of ground-water.

본 연구에서는 천부의 암반 공동에 대용량 고온의 열에너지를 저장하는 경우 주변 암반에 야기되는 열-수리-역학적 연계거동을 살펴보고, 이에 지하수위와 암반 투수계수 등 수리적 조건이 미치는 영향을 검토하였다. 해석대상을 투수계수가 비교적 낮은 수준($10^{-17}m^2$)인 결정질 암반으로 가정할 때 열에너지 저장으로 인한 암반 거동에 지하수가 미치는 영향은 크지 않을 것으로 예측되었다. 저장 공동이 지하수위 하부에 위치하는 경우의 온도, 주응력, 변위 분포 등은 저장공동이 불포화대에 위치하는 경우와 거의 동일하게 나타났다. 암반내 열전달 특성은 암반의 투수계수에 매우 큰 영향을 받는 것으로 나타났다. 암반의 투수계수를 $10^{-15}m^2$ 이하로 가정한 경우 열전달은 주로 암반에 전도에 의한 것으로 판단할 수 있었으나, 투수계수를 $10^{-12}m^2$으로 가정하는 경우 지하수 대류에 의한 상향 열유동이 뚜렷이 관찰되었다. 암반 투수계수의 크기에 따라 열수의 대류나 비등으로 인한 상변화 등 복합적인 유동 특성을 나타났으며, 온도, 압력, 포화도 분포가 상이하게 발달하였다.

Keywords

References

  1. Bonte, M., Stuyfzand, P.J., Hulsmann, A., Van Beelen, P., 2011, Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union, Ecology and Society, Vol. 16, No. 1, pp. 22.
  2. Hall, E.K., Neuhauser, C., Cotner, J.B., 2008, Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems, ISME Journal, Vol. 2, No. 5, pp. 471-481. https://doi.org/10.1038/ismej.2008.9
  3. Itasca Consulting Group Inc., 2012, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) Version 5.0 (Minneapolis, MN).
  4. Jaeger, J.C., Cook, N.G.W, Zimmerman, R.W., 2007, Fundamentals of rock mechanicics, 4th edition, London: Chapman and Hall.
  5. Jesussek, A., Grandel, S., Dahmake, A., 2012, Impacts of subsurface heat storage on aquifer hydrogeochemistry, Environmental Earth Science, Vol. 69, pp. 1999-2012.
  6. Joo, G.-J., Kim, D.-K., Yoon, J.-D., Jeong, K.-S., 2008, Climate changes and freshwater ecosystems in South Korea, Journal of Korean Society Environment Engineers, Vol. 30, No. 12, pp. 1190-1196.
  7. Kang, H., Park, M.-Y., Jang, J.-H., 2013, Effect of Climate change on fish habitat in the Nakdong river watershed, Journal of Korea Water Resources Association, Vol. 46, No. 1, pp. 1-12. https://doi.org/10.3741/JKWRA.2013.46.1.1
  8. Kim, H.M., Rutqvist, J., Ryu, D.W., Choi, B.H., Sunwoo, C., Song, W.K., 2012, Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance, Applied Energy, Vol. 92, pp. 653-667. https://doi.org/10.1016/j.apenergy.2011.07.013
  9. Knauss, K.G., Dibley, M.J., Leif, R.N., Mew, D.A., Aines, R.D., 2000, The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature, Applied Geochemistry, Vol. 15, No. 4, pp. 501-512. https://doi.org/10.1016/S0883-2927(99)00058-X
  10. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2014, Development of technology of CO2 geological storage and securing green energy resources in deep geo-environment (Part III) GP2012-001-2014(3).
  11. Kurylyk, B.L., MacQuarrie, K.T.B., Caissie, D., McKenzie, J.M., 2014, Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature projections, Hydrology and Earth System Sciences, Vol. 11, pp. 12573-12626. https://doi.org/10.5194/hessd-11-12573-2014
  12. Menberg, K., Blum, P., Kurylyk, B. L., Bayer, P., 2014, Observed groundwater temperature response to recent climate change, Hydrology and Earth System Sciences, Vol. 18, pp. 4453-4466. https://doi.org/10.5194/hess-18-4453-2014
  13. Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., Levin, E.D., 2009, The toxicology of climate change: environmental contaminants in a warming world. Environment International, Vo. 35, No. 6, pp. 971-986. https://doi.org/10.1016/j.envint.2009.02.006
  14. Park, D., Kim, H.M., Ryu, D.W., Choi, B.H., Sunwoo, C., Han, K.C., 2013, The effect of aspect ratio on the thermal stratification and heat loss in rock caverns for underground thermal energy storage, International Journal of Rock Mechanics and Mining Sciences, Vol. 64, pp. 201-209. https://doi.org/10.1016/j.ijrmms.2013.09.004
  15. Park, J.W., Park, D., Ryu, D., Choi, B.H., Park, E.S., 2014, Analysis on heat transfer and heat loss characteristics of rock cavern thermal energy storage, Engineering Geology, Vol. 181, pp. 142-156. https://doi.org/10.1016/j.enggeo.2014.07.006
  16. Park, J.W., Rutqvist, J., Ryu, D., Synn, J., Park, E.S., 2015, Coupled thermal-hydrological-mechanical behavior of rock mass, Tunnel and Underground Space, Vol. 25, No. 2, pp. 155-167. https://doi.org/10.7474/TUS.2015.25.2.155
  17. Porporato, A., Laio, F., Ridolfi, L., Rodriguez-Iturbe, I., 2001, Plants in water-controlled ecosystems: active role in hydrological processes and response to water stress III, Vegetation water stress. Advances in Water Resources, Vol. 24, No. 7, pp. 725-744. https://doi.org/10.1016/S0309-1708(01)00006-9
  18. Pruess, K., Oldenburg, C., Moridis, G., 1999, TOUGH2 User's guid, Ver. 2.0., Lawrence Berkeley National Laboratory Report LBL-43134, Berkeley, CA, USA.
  19. Rodriguez-Iturbe, I., 2000, Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics, Water Resources Research, Vol. 36, No. 1, pp. 3-9. https://doi.org/10.1029/1999WR900210
  20. Rutqvist, J., Oldenburg, C.M., 2008, Analysis of injectioninduced micro-earthquakes in a geothermal steam reservoir, In: Proceedings of the 42th U.S. Rock Mechanics Symposium, San Francisco, California, USA, June 29-July 2, 2008, American Rock Mechanics Association ARMA, Paper No. 151.
  21. Rutqvist, J., Tsang, C.F., 2003, Analysis of thermalhydrologic-mechanical behavior near an emplacment drift at Yucca Mountain, Journal of Contaminant Hydrology, Vol. 62-63, pp. 637-652. https://doi.org/10.1016/S0169-7722(02)00184-5
  22. Rutqvist, J., Y-S. Wu, C-F Tsang and G. Bodvarsson, 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechenics and Mining Sciences, Vol. 39, pp. 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  23. Sowers, L.S., Epstein, C., York, K.P., van Guilder, B., Jahangir, Z.M.G.S., Steinberg, A., Stafford, L., Pierce, J., 1997, Impact of a large scale geothermal project on its surface and subterranean environment, Megastock 97 Proceedings, Volume 1: 85-90. Presented at the 7th International Conference on Thermal Energy Storage, Sapporo, Japan, June 18-21, 1997.
  24. Ten Hulscher, T.E.M., Cornelissen, G., 1996, Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants-a review, Chemosphere, Vol. 32, No. 4, pp. 609-626. https://doi.org/10.1016/0045-6535(95)00345-2
  25. Tsang, C.F., Birkholzer, J., Rutqvist, J., 2008, A comparative review of hydrologic issues involved in geologic storage of $CO_2$ and injection disposal of liquid waste, Journal of Environmental Geology, Vol. 54, pp. 1723-1737. https://doi.org/10.1007/s00254-007-0949-6
  26. York, K.P., Jahangir, Z.M.G.S., Solomon, T., Stafford, L., 1998, Effects of a large scale geothermal heat pump installation on aquifer microbiota. The Second Stockton International Geothermal Conference Proceedings, pp. 49-56, Presented at the Second Stockton International Geothermal Conference, Pomona, NJ, March 16-17, 1998.