• 제목/요약/키워드: robust servo

검색결과 253건 처리시간 0.029초

신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어 (Simple AI Robust Digital Position Control of PMSM using Neural Network Compensator)

  • 윤성구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.620-623
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a fedforward recall and error back-propagation training. Since the total number of nodes are only eight this system can be easily realized by the general microprocessor. During the normal operation the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. IN addition the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Singal Processor DS1102 Board (TMS320C31) The basic DSP software is used to write C program which is compiled by using ANSI-C style function prototypes.

  • PDF

유전 알고리즘을 이용한 강인한 모델 추종형 제어 시스템의 설계 (A Design on Robust Model Following PD Control System Using Genetic Algorithm)

  • 조규열;황현준;김동환;서정일;이경홍;박준호;황창선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.119-121
    • /
    • 1997
  • This paper suggests a design method of the robust model following PD control system using genetic algorithm. This PD control system is designed by applying genetic algorithm with reference model to the optimal determination of proportional and derivative gains that are given by PD servo controller. These proportional and derivative gains are optimized simultaneously in the search domain guaranteeing the robust stability of closed-loop system satisfying different stability margins. The effectiveness of this PD control system is verified by computer simulation.

  • PDF

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

Switched Reluctance Motor의 견실한 전류추적 제어기 설계 (Robust Current Tracking Control of Switched Reluctance Motors)

  • 김창환
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.218-228
    • /
    • 2001
  • The switched reluctance motor(SRM) has been increasingly used in high-performance servo applications such as electric vehicles, aircraft, and direct-drive robots. The dynamic equations of SRMs are, however, highly nonlinear and this makes it difficult to control SRMs with high performance. In this paper, we propose a new robust current tracking controller for SAMs which can compensate the nonlinear characteristics of SRM(i.e., back-emf and inductance) completely and hence shows perfect tracking performance even with an arbitrary small current control loop gain. Furthermore, even in case that there exist some model uncertainties, our current controller guarantees that the stator currents can track the reference current commands with sufficiently small tracking errors. In order to justify our work, we present the tracking performance analysis and some simulation results.

  • PDF

궤환 제어시스템의 강인성 증진을 위한 미분 관리제어기 (A Differential Supervisory Controller for Robustness Increase of Feedback Control System)

  • 박왈서
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.363-367
    • /
    • 2003
  • Robust control for feedback control system is needed according to the highest precision of industrial automation. However, when a feedback control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, Hybrid control method of feedback and Differential Supervisory controller is presented. A Feedback Controller is operated as a main controller, A Differential Supervisory Controller is a controller which operates only when some undesirable phenomena occur, e. g., when the error hits the boundary of constraint set. The robust control function of Differential Supervisory Controller, as a assistant controller is operated when state is unstable by disturbance. it demonstrated by speed control of motor.

Robust motion control of a flexible micro-actuator using $H_{\infty}$ control method

  • Okugawa, Masayuki;Sasaki, Minoru;Fujisawa, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.397-400
    • /
    • 1996
  • In this paper, robust motion control of a flexible micro-actuator is presented. The actuator is made of a bimorph piezoelectric high-polymer material (PVDF). No mathematical model system can exactly model a physical system such a flexible micro-actuator. For this reason we must be aware of how modeling errors might adversely affect the performance of a control system for such a model. The H method addresses a wide range of the control problems, combining the frequency and time domain approaches. The design is an optimal one in the sense of minimization of the maximum of the closed-loop transfer function. It includes colored measurement and process noise. It also addresses the issues of robustness due to model uncertainties, and is applicable to the, flexible micro-actuator control problem. Therefore, we adopt the H control problem to the robust motion control of the flexible micro-actuator. Theoretical and experimental results demonstrate the satisfactory performance and the effectiveness of the designed controller. the effectiveness of the designed controller.

  • PDF

선박용 중속 디젤 기관의 로바스트 속도제어기 개발 (Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.27-35
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

  • PDF

선박용 중속 디젤 기관의 로바스트 속도제어기 개발 (Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

Blu-ray 디스크 드라이브 시스템 트래킹 서보시스템에 대한 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계 (Robust and Non-fragile $H^{\infty}$ Controller Design for Tracking Servo of Blu-ray disc Drive System)

  • 이형호;김준기;김원기;조상우;박홍배
    • 전자공학회논문지SC
    • /
    • 제45권3호
    • /
    • pp.32-41
    • /
    • 2008
  • 본 논문에서는 blu-ray 디스크 드라이버의 트랙킹 서보시스템에 대하여 플랜트와 제어기의 불확실성을 보상하는 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계방법을 제안한다. 플랜트와 제어기의 불확실성을 매개변수화 선형행렬부등식(PLMI: parameterized linear matrix inequality)을 이용하여 구조화된 불확실성의 형태로 표현하며, Lyapunov 함수를 이용하여 구조적인 제어기의 이득섭동을 고려한 견실비약성 $H^{\infty}$ 상태궤환 제어기가 존재할 충분조건 및 제어기 설계방법을 PLMI의 형태로 제안한다. 또한, 완화기법(relaxation technique)을 통하여 PLMI를 유한개의 LMI의 형태로 변환하여 견실하고 최적화된 제어기 이득과 제어기 섭동 범위를 계산하고, 모의실험을 통해서 제시된 제어기의 타당성 및 견실성(robustness)과 비약성(non-fragility)을 검증한다.

퍼지논리 제어기를 이용한 영구자석 동기전동기의 강인성 제어 (Robust Control of Permanent Magnet Synchronous Motor using Fuzzy Logic Controller)

  • 윤병도;김윤호;채수형;김춘삼;유보민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1228-1230
    • /
    • 1992
  • The permanent magnet synchronous motor(PMSM) is receiving Increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. By vector-controll method, PMSM has the same operating characterics as seperately excited dc motor. The drive system of servo motor is requested to have an accurate response for the reference input and a quick recovery for the disturbance such as load torque. However, when the unknown disturbances and parameter variations are imposed on the permanent magnet synchronous motor(PMSM), the drive system is significantly effected by them. As a result, the drive system with both a fast compensation and a robustness to a parameter variations is requested. This paper investigates the possibility of applying the fuzzy logic controller(FLC) using Multi-Rule Base In a servo motor control system. In this paper, The five Rule Bases(1 to 5) are selected to recover the state error caused by the disturbance in steady state. In the initial operating mode. Rule Base 0 is used. To show the validity of the proposed fuzzy logic controll system, the computer simulation results are provided.

  • PDF