For the problem of testing the parallelism of several regression lines against ordered alternatives, two test statistics and proposed and examined. The proposed statistics are linear combinations of robust estimators of slope parameters, which are modifications of the Adichie (1976) test based on scores. The asymptotic null variances of the proposed states tics are estimated by the kernel density estimation methods. The proposed tests are compared with the Adichie's test in terms of asymptotic relative efficiency and small-sample powers.
This paper introduces a GP(Genetic Programming) based robust technique for temperature compensation in short-range prediction. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, because forecast models do not reliably determine weather conditions. Most of MOS use a linear regression to compensate a prediction model, therefore it is hard to manage an irregular nature of prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP is suggested. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days temperatures in Korean regions. This method is then compared to the UM model and has shown superior results. The training period of 2007-2009 summer is used, and the data of 2010 summer is adopted for verification.
본 연구에서는 AR(1) 과정을 따르는 시계열 모형에서 가산적 이상치(Additive Out-lier)가 존재하는 경우, 1차 자기상관계수에 대한 로버스트 추정방법으로 Rupport 와 Carroll (1980)에 의해 회귀모형에서 제안된 L-추정법 형태의 절사최소제곱추정 (PE 추정)방법을 제안하였다. 더불어 X축의 이상치에 대한 비중강하(down-weight)의 방법으로 Mallows의 가중함수를 고려한 유계영향 절사최소제곱 (bounded influence PE, BIPE)추정량을 제안하였으며 모의 실험을 통하여 각 추정량의 효율성을 비교하였다. 모의실험 결과, 다양한 자료의 오염률상에서 일반화 LAD추정치를 예비 추정치로 고려한 BIPE(LAD)-추정량의 효율이 좋은 것으로 나타났다.
컴퓨터 비전 분야에서 다루는 많은 문제는 대부분 수학적 모델을 기반으로 하고 있으며 그 모델의 인수를 예측하는 방법을 사용하여 주어진 문제에 대한 최적의 해를 구한다. 그런데 입력 데이타 집합에 보통의 잡음에 비해 상대적으로 크기가 큰 이상치가 포함되어 있다면 이것은 부정확한 결과를 초래한다. 이러한 문제를 해결하기 위해 사용되는 대표적인 방법으로 강건한 예측기법인 RANSAC 알고리즘이 있다. 기존 RANSAC 알고리즘의 가장 큰 문제점은 이상치의 비율과 같은 데이타 분포에 대한 사전지식이 필요하다는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해 매 반복 수행시 마다 퍼지분류 기법을 이용하여 전체 데이타를 좋은 샘플집합(good sample set)과 나쁜 샘플집합(bad sample set) 그리고 모호한 샘플집합(vague sample set)으로 분류한 뒤 좋은 샘플집합에서만 샘플링을 해나감으로써 이상치에 대한 제거율과 해의 정확도를 향상시키는 FRANSAC 알고리즘을 제안한다. 실험 결과에서는 제안한 알고리즘을 각각 선형회귀 문제와 호모그래피 계산 문제에 대해 적용했을 때의 성능을 보인다.
Communications for Statistical Applications and Methods
/
제16권2호
/
pp.265-275
/
2009
지역적 공간의 특성을 고려한 공간선형회귀모형을 다루는 대부분의 연구들에서 사용되고 있는 자료는 완전한 상태임을 고려하고 있다. 하지만 공간선형회귀모형을 정확히 추론함에 있어서 완전한 자료가 사용 가능한 경우는 그다지 많지가 않은 것이 현실이다. 만약 이러한 상황을 고려하지 않고 통계적 추론을 할 경우 잘못된 결론이 도출될 수 있다. 본 연구에서는 오차항이 일차 공간자기상관을 따르는 공간선형회귀모형에서 자료가 불완전한 상태 일 경우 일반화 최대엔트로피 형식을 이용하여 미지의 모수를 추정하는 방법을 제안하였고 몬테카를로 모의실험을 통하여 여러 전통적인 추정량들과 효율성을 비교하였다. 그 결과, 자료가 불완전한 상태에서 일반화 최대엔트로피 추정량이 다른 추정방법들에 비해 효율적인 추정치를 제공하였다.
비선형 혼합효과 모형은 다양한 분야에서 반복 측정 자료를 분석할 때 주로 사용된다. 비선형 혼합효과 모형은 개체 내 변동(intra-individual variation)에 대해 고려하는 제 1단계 개별수준모델(individual-level model)과 개체간 변동(inter-individual variation)에 대해 고려하는 제 2단계 개체군모델(population model)의 두 단계로 구성되어 있다. 비선형 혼합효과 모형의 첫 번째 단계인 개별수준모델은 비선형 회귀모형의 모수를 추정하는 것으로 일반적인 비선형 회귀모형과 같고, 주로 보통최소제곱추정 방법을 사용하여 모수를 추정한다. 그러나 최소제곱추정방법은 가정된 비선형 함수가 자료에 의해 명시적으로 드러나지 않는 경우 모수의 추정값과 그 표준오차가 극단적으로 커지는 문제가 발생할 수 있다. 본 논문에서는 최근에 비선형 회귀모형에서 제안된 능형회귀(ridge regression) 방법을 비선형 혼합효과 모형의 제 1단계 개별수준모델에 도입함으로써 이러한 문제를 해결할 수 있는 새로운 추정방법을 제안하였다. 제안된 추정량은 모의실험 연구를 통하여 기존의 표준적인 추정량과 그 성능을 비교하였다. 또한 미국의 National Toxicology Program으로부터 얻어진 정량적 대량고속 스크리닝(quantitative high throughput screening) 실제 자료를 사용하여 추정 방법들을 비교하였다.
많은 수의 유전자 데이터를 이용해서 Lasso 회귀 분석을 할 때, 유전자 발현량 값들 사이의 높은 상관성으로 인하여 회귀 계수의 추정값이 회귀 분석의 반복 시행마다 달라질 수 있다. L1 정규화에 의해 축소되는 회귀 계수의 불안정성은 변수 선택을 어렵게 하는 요인이 된다. 본 연구에서는 이러한 문제를 해결하기 위하여 부트스트랩 단계를 반복 시행하여 높은 빈도로 선택된 유전자들을 이용한 회귀 모형들을 만들고, 각 모형들에서 안정적으로 선택되는 특징 유전자들을 찾고, 그 유전자들이 위양성 결과가 아님을 입증하였다. 또한, 회귀모형 별 예측지수의 정확도를 실제지수와의 상관관계를 이용해 측정하였는데, 선택된 특징 유전자들의 회귀계수 부호의 분포가 정확도와 관련성을 보임을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.33-39
/
2013
반응변수의 변환을 고려하는 부분선형모형에서 이상치 문제는 선형모형에서와 마찬가지로 반응변수 변환모수의 추정에 왜곡된 결과를 초래할 수 있다. 이를 해결하기 위해서는 부분선형모형에서 반응변수 변환 모수 추정과 이상치 탐지 과정이 수행되어야 하지만 모형에 포함된 비모수 함수의 비정형성에 따른 어려움이 크다. 본 연구에서는 부분선형모형의 비모수함수에 대한 추정과 순차적 검정, 최대절사우도추정 등과 같은 이상치 제거방법의 적용을 통하여 부분선형모형에서 이상치에 강건한 반응변수 변환 과정을 제안한다. 제안된 방법들은 모의실험과 예제를 통해 효과를 비교 검증한다.
In the past decade, deep learning has been applied to various medical image analysis tasks. Skeletal bone age estimation is clinically important as it can help prevent age-related illness and pave the way for new anti-aging therapies. Recent research has applied deep learning techniques to the task of bone age assessment and achieved positive results. In this paper, we propose a bone age prediction method using a deep convolutional neural network. Specifically, we first train a classification model that automatically localizes the most discriminative region of an image and crops it from the original image. The regions of interest are then used as input for a regression model to estimate the age of the patient. The experiments are conducted on a whole-body scintigraphy dataset that was collected by Chonnam National University Hwasun Hospital. The experimental results illustrate the potential of our proposed method, which has a mean absolute error of 3.35 years. Our proposed framework can be used as a robust supporting tool for clinicians to prevent age-related diseases.
본 논문에서는 학업성취도가 낮은 학생이 학업성취도가 보통 이상 학생의 학업성취도에 미치는 친구효과를 추정하였다. 친구효과 추정을 위해 2009년에 시행되었던 학력향상중점학교 정책이 수반하는 회귀불연속설계를 이용하였다. 중학교를 대상으로 한 국가수준 학업성취도 평가 전수 자료를 이용하여 분석한 결과, 이러한 친구효과는 존재하였음을 확인하였다. 구체적으로는 학력향상중점학교 정책으로 학업성취도 미달학생 비중이 1%p 감소할 때, 보통 이상 학생의 비중이 5%p 이상 증가하였다. 더 나아가서 이러한 친구효과는 다양한 강건성 검정 하에서도 여전히 존재함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.