• 제목/요약/키워드: robust regression estimation

검색결과 99건 처리시간 0.024초

순서대립가설에 대한 회귀직선 평행성 검정에 관한 연구 (A Study on Tests for the Parallelism of Regression Lines Against Ordered Alternatives)

  • 송문섭;조신섭;이재준;신봉섭
    • 품질경영학회지
    • /
    • 제21권2호
    • /
    • pp.162-169
    • /
    • 1993
  • For the problem of testing the parallelism of several regression lines against ordered alternatives, two test statistics and proposed and examined. The proposed statistics are linear combinations of robust estimators of slope parameters, which are modifications of the Adichie (1976) test based on scores. The asymptotic null variances of the proposed states tics are estimated by the kernel density estimation methods. The proposed tests are compared with the Adichie's test in terms of asymptotic relative efficiency and small-sample powers.

  • PDF

유전 프로그래밍 기반 단기 기온 예보의 보정 기법 (Genetic Programming Based Compensation Technique for Short-range Temperature Prediction)

  • 현병용;현수환;이용희;서기성
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1682-1688
    • /
    • 2012
  • This paper introduces a GP(Genetic Programming) based robust technique for temperature compensation in short-range prediction. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, because forecast models do not reliably determine weather conditions. Most of MOS use a linear regression to compensate a prediction model, therefore it is hard to manage an irregular nature of prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP is suggested. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days temperatures in Korean regions. This method is then compared to the UM model and has shown superior results. The training period of 2007-2009 summer is used, and the data of 2010 summer is adopted for verification.

AR(1) 모형의 모수에 대한 L-추정법 (L-Estimation for the Parameter of the AR(l) Model)

  • 한상문;정병철
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.43-56
    • /
    • 2005
  • 본 연구에서는 AR(1) 과정을 따르는 시계열 모형에서 가산적 이상치(Additive Out-lier)가 존재하는 경우, 1차 자기상관계수에 대한 로버스트 추정방법으로 Rupport 와 Carroll (1980)에 의해 회귀모형에서 제안된 L-추정법 형태의 절사최소제곱추정 (PE 추정)방법을 제안하였다. 더불어 X축의 이상치에 대한 비중강하(down-weight)의 방법으로 Mallows의 가중함수를 고려한 유계영향 절사최소제곱 (bounded influence PE, BIPE)추정량을 제안하였으며 모의 실험을 통하여 각 추정량의 효율성을 비교하였다. 모의실험 결과, 다양한 자료의 오염률상에서 일반화 LAD추정치를 예비 추정치로 고려한 BIPE(LAD)-추정량의 효율이 좋은 것으로 나타났다.

퍼지 RANSAC을 이용한 강건한 인수 예측 (Robust Parameter Estimation using Fuzzy RANSAC)

  • 이중재;장효종;김계영;최형일
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권2호
    • /
    • pp.252-266
    • /
    • 2006
  • 컴퓨터 비전 분야에서 다루는 많은 문제는 대부분 수학적 모델을 기반으로 하고 있으며 그 모델의 인수를 예측하는 방법을 사용하여 주어진 문제에 대한 최적의 해를 구한다. 그런데 입력 데이타 집합에 보통의 잡음에 비해 상대적으로 크기가 큰 이상치가 포함되어 있다면 이것은 부정확한 결과를 초래한다. 이러한 문제를 해결하기 위해 사용되는 대표적인 방법으로 강건한 예측기법인 RANSAC 알고리즘이 있다. 기존 RANSAC 알고리즘의 가장 큰 문제점은 이상치의 비율과 같은 데이타 분포에 대한 사전지식이 필요하다는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해 매 반복 수행시 마다 퍼지분류 기법을 이용하여 전체 데이타를 좋은 샘플집합(good sample set)과 나쁜 샘플집합(bad sample set) 그리고 모호한 샘플집합(vague sample set)으로 분류한 뒤 좋은 샘플집합에서만 샘플링을 해나감으로써 이상치에 대한 제거율과 해의 정확도를 향상시키는 FRANSAC 알고리즘을 제안한다. 실험 결과에서는 제안한 알고리즘을 각각 선형회귀 문제와 호모그래피 계산 문제에 대해 적용했을 때의 성능을 보인다.

오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구 (Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance)

  • 전수영;임성섭
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.265-275
    • /
    • 2009
  • 지역적 공간의 특성을 고려한 공간선형회귀모형을 다루는 대부분의 연구들에서 사용되고 있는 자료는 완전한 상태임을 고려하고 있다. 하지만 공간선형회귀모형을 정확히 추론함에 있어서 완전한 자료가 사용 가능한 경우는 그다지 많지가 않은 것이 현실이다. 만약 이러한 상황을 고려하지 않고 통계적 추론을 할 경우 잘못된 결론이 도출될 수 있다. 본 연구에서는 오차항이 일차 공간자기상관을 따르는 공간선형회귀모형에서 자료가 불완전한 상태 일 경우 일반화 최대엔트로피 형식을 이용하여 미지의 모수를 추정하는 방법을 제안하였고 몬테카를로 모의실험을 통하여 여러 전통적인 추정량들과 효율성을 비교하였다. 그 결과, 자료가 불완전한 상태에서 일반화 최대엔트로피 추정량이 다른 추정방법들에 비해 효율적인 추정치를 제공하였다.

비선형 혼합효과모형에서의 로버스트 능형회귀 방법과 정량적 고속 대량 스크리닝 자료에의 응용 (Robust ridge regression for nonlinear mixed effects models with applications to quantitative high throughput screening assay data)

  • 유지선;임창원
    • 응용통계연구
    • /
    • 제31권1호
    • /
    • pp.123-137
    • /
    • 2018
  • 비선형 혼합효과 모형은 다양한 분야에서 반복 측정 자료를 분석할 때 주로 사용된다. 비선형 혼합효과 모형은 개체 내 변동(intra-individual variation)에 대해 고려하는 제 1단계 개별수준모델(individual-level model)과 개체간 변동(inter-individual variation)에 대해 고려하는 제 2단계 개체군모델(population model)의 두 단계로 구성되어 있다. 비선형 혼합효과 모형의 첫 번째 단계인 개별수준모델은 비선형 회귀모형의 모수를 추정하는 것으로 일반적인 비선형 회귀모형과 같고, 주로 보통최소제곱추정 방법을 사용하여 모수를 추정한다. 그러나 최소제곱추정방법은 가정된 비선형 함수가 자료에 의해 명시적으로 드러나지 않는 경우 모수의 추정값과 그 표준오차가 극단적으로 커지는 문제가 발생할 수 있다. 본 논문에서는 최근에 비선형 회귀모형에서 제안된 능형회귀(ridge regression) 방법을 비선형 혼합효과 모형의 제 1단계 개별수준모델에 도입함으로써 이러한 문제를 해결할 수 있는 새로운 추정방법을 제안하였다. 제안된 추정량은 모의실험 연구를 통하여 기존의 표준적인 추정량과 그 성능을 비교하였다. 또한 미국의 National Toxicology Program으로부터 얻어진 정량적 대량고속 스크리닝(quantitative high throughput screening) 실제 자료를 사용하여 추정 방법들을 비교하였다.

안정적 유전자 특징 선택을 위한 유전자 발현량 데이터의 부트스트랩 기반 Lasso 회귀 분석 (Lasso Regression of RNA-Seq Data based on Bootstrapping for Robust Feature Selection)

  • 조정희;윤성로
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권9호
    • /
    • pp.557-563
    • /
    • 2017
  • 많은 수의 유전자 데이터를 이용해서 Lasso 회귀 분석을 할 때, 유전자 발현량 값들 사이의 높은 상관성으로 인하여 회귀 계수의 추정값이 회귀 분석의 반복 시행마다 달라질 수 있다. L1 정규화에 의해 축소되는 회귀 계수의 불안정성은 변수 선택을 어렵게 하는 요인이 된다. 본 연구에서는 이러한 문제를 해결하기 위하여 부트스트랩 단계를 반복 시행하여 높은 빈도로 선택된 유전자들을 이용한 회귀 모형들을 만들고, 각 모형들에서 안정적으로 선택되는 특징 유전자들을 찾고, 그 유전자들이 위양성 결과가 아님을 입증하였다. 또한, 회귀모형 별 예측지수의 정확도를 실제지수와의 상관관계를 이용해 측정하였는데, 선택된 특징 유전자들의 회귀계수 부호의 분포가 정확도와 관련성을 보임을 확인하였다.

부분선형모형에서 반응변수변환을 위한 회귀진단 (Regression diagnostics for response transformations in a partial linear model)

  • 서한손;윤민
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.33-39
    • /
    • 2013
  • 반응변수의 변환을 고려하는 부분선형모형에서 이상치 문제는 선형모형에서와 마찬가지로 반응변수 변환모수의 추정에 왜곡된 결과를 초래할 수 있다. 이를 해결하기 위해서는 부분선형모형에서 반응변수 변환 모수 추정과 이상치 탐지 과정이 수행되어야 하지만 모형에 포함된 비모수 함수의 비정형성에 따른 어려움이 크다. 본 연구에서는 부분선형모형의 비모수함수에 대한 추정과 순차적 검정, 최대절사우도추정 등과 같은 이상치 제거방법의 적용을 통하여 부분선형모형에서 이상치에 강건한 반응변수 변환 과정을 제안한다. 제안된 방법들은 모의실험과 예제를 통해 효과를 비교 검증한다.

Region of Interest Localization for Bone Age Estimation Using Whole-Body Bone Scintigraphy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Kang, Sae Ryung;Min, Jung Joon
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.22-29
    • /
    • 2021
  • In the past decade, deep learning has been applied to various medical image analysis tasks. Skeletal bone age estimation is clinically important as it can help prevent age-related illness and pave the way for new anti-aging therapies. Recent research has applied deep learning techniques to the task of bone age assessment and achieved positive results. In this paper, we propose a bone age prediction method using a deep convolutional neural network. Specifically, we first train a classification model that automatically localizes the most discriminative region of an image and crops it from the original image. The regions of interest are then used as input for a regression model to estimate the age of the patient. The experiments are conducted on a whole-body scintigraphy dataset that was collected by Chonnam National University Hwasun Hospital. The experimental results illustrate the potential of our proposed method, which has a mean absolute error of 3.35 years. Our proposed framework can be used as a robust supporting tool for clinicians to prevent age-related diseases.

학업성취도 미달 학생이 보통 이상 학생의 학업성취도에 미치는 친구효과 추정 (The Peer Effects of Under-performing Students on Proficient Students: Evidence from Regression Discontinuity Design)

  • 우석진
    • 노동경제논집
    • /
    • 제39권3호
    • /
    • pp.75-97
    • /
    • 2016
  • 본 논문에서는 학업성취도가 낮은 학생이 학업성취도가 보통 이상 학생의 학업성취도에 미치는 친구효과를 추정하였다. 친구효과 추정을 위해 2009년에 시행되었던 학력향상중점학교 정책이 수반하는 회귀불연속설계를 이용하였다. 중학교를 대상으로 한 국가수준 학업성취도 평가 전수 자료를 이용하여 분석한 결과, 이러한 친구효과는 존재하였음을 확인하였다. 구체적으로는 학력향상중점학교 정책으로 학업성취도 미달학생 비중이 1%p 감소할 때, 보통 이상 학생의 비중이 5%p 이상 증가하였다. 더 나아가서 이러한 친구효과는 다양한 강건성 검정 하에서도 여전히 존재함을 보였다.

  • PDF