Communications for Statistical Applications and Methods
/
제22권6호
/
pp.543-556
/
2015
We present a survey of contributions that defined the nature and extent of robust statistics for the last 50 years. From the pioneering work of Tukey, Huber, and Hampel that focused on robust location parameter estimation, we presented various generalizations of these estimation procedures that cover a wide variety of models and data analysis methods. Among these extensions, we present linear models, clustered and dependent observations, times series data, binary and discrete data, models for spatial data, nonparametric methods, and forward search methods for outliers. We also present the current interest in robust statistics and conclude with suggestions on the possible future direction of this area for statistical science.
This paper deals with the robustness properties of the minimum disparity estimation in linear regression models. The estimators defined as statistical quantities whcih minimize the blended weight Hellinger distance between a weighted kernel density estimator of the residuals and a smoothed model density of the residuals. It is shown that if the weights of the density estimator are appropriately chosen, the estimates of the regression parameters are robust.
The Journal of Asian Finance, Economics and Business
/
제5권1호
/
pp.11-16
/
2018
This research examines the alternative ways of estimating the coefficient of non-diversifiable risk, namely beta coefficient, in Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) that is an essential element of assessing the value of diverse assets. The non-parametric methods used in this research are the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator). The Jackknife, the resampling technique, is also employed to validate the results. According to finance literature and common practices, these coecients have often been estimated using Ordinary Least Square (LS) regression method and monthly return data set. The empirical results of this research pointed out that the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) performed much better than Ordinary Least Square (LS) in terms of eciency for large-cap stocks trading actively in the United States markets. Interestingly, the empirical results also showed that daily return data would give more accurate estimation than monthly return data in both Ordinary Least Square (LS) and robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) regressions.
Computational algorithms to calculate M-estimators and rank estimators of regression parameters from left-truncated and right-censored data are developed herein. In the case of M-estimators, new statistical methods are also introduced to incorporate leverage assements and concomitant scale estimation in the presence of left truncation and right censoring on the observed response. Furthermore, graphical methods to examine the residuals from these data are presented. Two real data sets are used for illustration.
Communications for Statistical Applications and Methods
/
제11권3호
/
pp.485-494
/
2004
An algorithm is proposed to identify multiple outliers in linear regression. It is based on the clustering of residuals from the least median of squares estimation. A cut-height criterion for the hierarchical cluster tree is suggested, which yields the optimal clustering of the regression outliers. Comparisons of the effectiveness of the procedures are performed on the basis of the classic data and artificial data sets, and it is shown that the proposed algorithm is superior to the one that is based on the least squares estimation. In particular, the algorithm deals very well with the masking and swamping effects while the other does not.
Communications for Statistical Applications and Methods
/
제26권3호
/
pp.273-293
/
2019
We consider the problem of model selection in multiple linear regression with outliers and non-normal error distributions. In this article, the robust model selection criterion is proposed based on the robust estimation method with the least absolute deviation (LAD). The proposed criterion is shown to be consistent. We suggest proposed criterion based algorithms that are suitable for a large number of predictors in the model. These algorithms select only relevant predictor variables with probability one for large sample sizes. An exhaustive simulation study shows that the criterion performs well. However, the proposed criterion is applied to a real data set to examine its applicability. The simulation results show the proficiency of algorithms in the presence of outliers, non-normal distribution, and multicollinearity.
대부분의 자료는 여러가지 원인으로 인한 특이치로 오염되어 있으며, 이러한 상황에서 신뢰성 있는 추정량을 얻어내고 이에 대한 통계적 추론을 시행하는 것은 중요한 문제이다. 그러나 이제까지 제안된 로버스트 회귀추정량들은 계산상의 어려움과 정규오차모형에서 최소제곱추정량에 비하여 떨어지는 효율성때문에 통계적 추론의 정확성을 확신할 수 없었다. 최근 제안된 Lee(2004)의 가중자기조율회귀추정량(weighted self-tuning estimator, WSTE)은 다른 로버스트 회귀추정량에 비하여 정확한 계산과정과 그에 따른 추정량의 점근적 정규성 및 고붕괴점을 갖는다. 그러나 통계적 추론을 위하여 이제까지 널리 사용해왔던 로버스트 추정량에 기반한 가중최소제곱추정방법(weighted least squares estimator)은 WSTE에서조차 정규오차모형하에서 최소제곱추정량과 동일한 수준의 효율성을 제공해주지 는 못한다. 본 논문에서는 WSTE에 기반한 또다른 통계적 추론 방법을 제안하고, 이 방법을 사용함으로써 정규오차모형 및 대표본에서 보다 정확한 결과를 얻을 수 있음을 몬테칼로 모의실험을 통해 제시하였다.
The Journal of Asian Finance, Economics and Business
/
제7권10호
/
pp.543-553
/
2020
This paper examines the effect of COVID-19 pandemic on the Philippine stock exchange, peso-dollar rate and retail price of diesel using robust least squares regression and vector autoregression (VAR). The robust least squares regression using MM-estimation method concluded that COVID-19 daily infection has negative and statistically significant effect on the Philippine stock exchange index, peso-dollar exchange rate and retail pump price of diesel. This is consistent with the results of correlation diagnostics. As for the VAR model, the lag values of the independent variable disclose significance in explaining the Philippine stock exchange index, peso-dollar exchange rate and retail pump price of diesel. Moreover, in the short run, the impulse response function confirmed relative effect of COVID-19 daily infections and the variance decomposition divulge that COVID-19 daily infections have accounted for only minor portion in explaining fluctuations of the Philippine stock exchange index, peso-dollar exchange and retail pump price of diesel. In the long term, the influence levels off. The Granger causality test suggests that COVID-19 daily infections cause changes in the Philippine stock exchange index and peso-dollar exchange rate in the short run. However, COVID-19 infection has no causal link with retail pump price of diesel.
This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.
An important assumption of the classical linear regression model is that the disturbances appearing in the population regression function are homoskedastic; that is, they all have the same variance. If we persist in using the usual testing procedures despite heteroskedasticity, what ever conclusions we draw or inferences we make be very misleading. The contribution of this paper will be to the concrete procedure of the proper estimation when the heteroskedasticity does exist in the data, because the quality of dependent variable predictions, i.e., the estimated variance of the dependent variable, can be improved by giving consideration to the issues of regional homogeneity and/or heteroskedasticity across the research area. With respect to estimation, specific attention should be paid to the selection of the appropriate strategy in terms of the auxiliary regression model. The paper shows that by testing for heteroskedasticity, and by using robust methods in the presence of with and without heteroskedasticity, more efficient statistical inferences are provided.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.