• Title/Summary/Keyword: robust optimization design

Search Result 416, Processing Time 0.033 seconds

Design of a Mechanical Joint for Zero Moment Crane By Kriging (크리깅을 이용한 제로 모멘트 크레인에 적용되는 조인트의 설계)

  • Kim, Jae-Wook;Jangn, In-Gwun;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.597-604
    • /
    • 2010
  • This study focuses on the design of a mechanical joint for a zero moment crane (ZMC), which is a specialized loading/unloading system used in a mobile harbor (MH). The mechanical joint is based on the concept of zero moment point (ZMP), and it plays an important role in stabilizing a ZMC. For effective stabilization, it is necessary to ensure that the mechanical joint is robust to a wide variety of loads; further, the joint must allow the structures connected to it to perform rotational motion with two degrees of freedom By adopting a traditional design process, we designed a new mechanical joint; in this design, a universal joint is coupled with a spherical joint, and then, deformable rolling elements are incorporated. The rolling elements facilitate load distribution and help in decreasing power loss during loading/unloading. Because of the complexity of the proposed system, Kriging-based approximate optimization method is used for enhancing the optimization efficiency. In order to validate the design of the proposed mechanical joint, a structural analysis is performed, and a small-scale prototype is built.

Wing Optimization based on a Reduced System (축소시스템 기반 비행체 날개 최적화 연구)

  • Kim, Hyun-Gi;Choi, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4411-4417
    • /
    • 2012
  • The present study proposes the optimization of wing structure base on reduced model which assures the solution accuracy and computational efficiency. Well-constructed reduced model assures the accurate result in the eigenvalue problem, dynamic analysis or sensitivity of design optimization. Reduced system is classified into the reduce-order model based on structural modes and the reduced system based on degrees of freedom. Because this study uses the reduced system based on degrees of freedom, it is important to select the dominant degrees of freedom properly. For this work, robust selection method, two-level selection scheme, is employed and IRS(Improved Reduced System) is applied to construct the final reduced system. In the optimization process based on the reduced system, all of the equivalent stress, eigenvalue and design sensitivities are calculated from the reduced system. Through a numerical example, it is shown that the present optimization methodology based on the reduction method can provide an optimal results for objective function satisfying constraint condition.

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.

Vehicle Lateral Stability Management Using Gain-Scheduled Robust Control

  • You, Seung-Han;Jo, Joon-Sang;Yoo, Seung-Jin;Hahn, Jin-Oh;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1898-1913
    • /
    • 2006
  • This paper deals with the design of a yaw rate controller based on gain-scheduled H$\infty$ optimal control, which is intended to maintain the lateral stability of a vehicle. Uncertain factors such as vehicle mass and cornering stiffness in the vehicle yaw rate dynamics naturally call for the robustness of the feedback controller and thus H$\infty$ optimization technique is applied to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. In the implementation stage, the feed-forward yaw moment by driver's steer input is estimated by the disturbance observer in order to determine the accurate compensatory moment. Finally, HILS results indicate that the proposed yaw rate controller can satisfactorily improve the lateral stability of an automobile.

Trajectory optimization for galloping quadruped robots (4 족보행 로봇의 갤로핑 궤적의 최적화)

  • Chae, Key-Gew;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.831-836
    • /
    • 2007
  • This paper proposes an optimal galloping trajectory which costs low energy and guarantees the stability of the quadruped robot. In the realization of the fast galloping, the trajectory design is important. As a galloping trajectory, we propose an elliptic leg trajectory, which provides simplified locomotion to complex galloping motions of animals. However, the elliptic trajectory, as an imitation of animal galloping motion, does not guarantee stability and minimal energy consumption. We propose optimization based on the energy and stability using a genetic algorithm, which provides the robust and global solution to a multi-body, highly nonlinear dynamic system. To evaluate and verify the effectiveness of the proposed trajectory, computer simulations were carried out.

  • PDF

Optimization of Fuzzy Car Controller Using Genetic Algorithm

  • Kim, Bong-Gi;Song, Jin-Kook;Shin, Chang-Doon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.222-227
    • /
    • 2008
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

Optimization of fuzzy logic controller using genetic algorithm (유전 알고리듬을 이용한 지능형 퍼지 제어기에 관한 연구)

  • Jang, Wook;Son, Yoo-Seok;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.960-963
    • /
    • 1996
  • In this paper, the optimization of a fuzzy controller using genetic algorithm is studied. The fuzzy controller has been widely applied to industries because it is highly flexible, robust easy to implement and suitable for complex systems. Generally, the design of fuzzy controller has difficulties in determining the structure of the rules and the membership functions. To solve these problems, the proposed method optimizes the structure of fuzzy rules and the parameters of membership functions simultaneously in an off-line method. The proposed method is evaluated through computer simulations.

  • PDF

Control System Synthesis Using BMI: Control Synthesis Applications

  • Chung, Tae-Jin;Oh, Hak-Joon;Chung, Chan-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Biaffine Matrix Inequality (BMI) is known to provide the most general framework in control synthesis, but problems involving BMI's are very difficult to solve because nonconvex optimization should be solved. In the previous paper, we proposed a new solver for problems involving BMI's using Evolutionary Algorithms (EA). In this paper, we solve several control synthesis examples such as Reduced-order control, Simultaneous stabilization, Multi-objective control, $H_{\infty}$ optimal control, Maxed $H_2$ / $H_{\infty}$control design, and Robust $H_{\infty}$ control. Each of these problems is formulated as the standard BMI form, and solved by the proposed algorithm. The performance in each case is compared with those of conventional methods.

Optimization of injection molding to minimize sink marks for cylindrical geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Yun-Suk;Je, Duck-Keun;Jeong, Young-Deug
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

  • PDF

Optimization of Injection Molding to Minimize Sink Marks for Cylindrical Geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.111-115
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.