• 제목/요약/키워드: robust motion control

검색결과 276건 처리시간 0.03초

자기베어링을 이용한 회전축의 최적제어 및 강건제어 (Optimal Control and Robust Control of Rotating Shaft Using Magnetic Bearings)

  • 강호식;정남희;윤일성;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1330-1337
    • /
    • 2004
  • In this study, the equations of motion of a rigid rotor supported by magnetic bearings are derived via Hamilton's principle, and transformed to a state-space form for control purpose. The optimal motion control of rotor magnetic bearing system based on the LQR(linear quadratic regulator) theory is addressed. New schemes related to the selection of the state weighting matrix Q and the control weighting matrix R involved in the quadratic functional to be minimized are proposed. And the robust control of the system with an LMI(linear matrix inequality) based H$_{\infty}$ theory is dealt with in this paper. Loop shapings of TFM (transfer function matrix) are used to increase the performance of control capability of the system. The control abilities of LQR and H$_{\infty}$ controller are compared by simulation and experimental tests and show that the capability of H$_{\infty}$ controller is superior to that of LQR.

선형 동기 모터의 정밀모션 제어 (High-accuracy Motion Control of Linear Synchronous Motor)

  • 정승현;성준엽;박정일
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, the pole placement controller based on the Robust Internal-loop Compensator (RIC) structure, which has inherent structural equivalence to disturbance observer, is proposed to control a linear positioning system. This controller has the advantage to easily select controller gains by using pole placement without loss of that of original RIC structure. The principal is to construct the pole placement controller for a nominal internal model instead of unknown real plant. Using linear motion experiment showed the effectiveness of the proposed controller.

스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구 (A study on robust multivariable control of stewart platform type motion simulator)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

Robust and Optimal Attitude Control Law Design for Spacecraft with Inertia Uncertainties

  • Park, Yon-Mook;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.1-12
    • /
    • 2002
  • This paper considers the robust and optimal three-axis attitude stabilization of rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft described in terms of either the Cayley-Rodrigues parameters or the Modified Rodrigues parameters is considered. A class of robust nonlinear control laws with relaxed feedback gain structures is proposed for attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic stability of the proposed control laws is shown by using the LaSalle Invariance Principle. The optimality properties of the proposed control laws are also investigated by using the Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical results presented in this paper.

Robust deterministic control for robotic manipulators with uncertainties

  • Kang, Chul-Goo;Horowitz, Roberto;Leitmann, George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.687-693
    • /
    • 1989
  • A robust deterministic control for a class of singularly perturbed uncertain systems, where uncertainties are characterized deterministically rather than stochastically, is developed based mainly on information available on an uncertain reduced-order system. The deterministic control scheme is applied to the motion control of a n degree of freedom robotic manipulator. The parasitic actuator and sensor dynamics of the manipulator are explicitly considered in the stability analysis of the deterministic controller using a singular perturbation model. Simulation and experimental studies for a two degree of freedom, direct drive SCARA manipulator are conducted to evaluate the effectiveness of the derived control scheme.

  • PDF

운동패턴 인식과 재생산기법에 관한 연구 (A Study on Motion Recognition and Regeneration Method)

  • ;강창남;김영복
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.97-103
    • /
    • 2014
  • In this paper, the authors consider a robot motion control to cope with painting, welding jobs and etc. Especially, a method for easy recognition and regeneration of the robot motions made by the operator is proposed. The method is based on the process of accurate modelling, controller design and experimental evaluation. In this study, the model and controller for all motions are obtained individually, where the control system is designed on the robust control framework. And the experiment result with good control performance is presented.

Gain-Scheduling 기법을 이용한 크레인의 흔들림 제어에 관한 연구 (A Study on the Sway Control of a Crane Based on Gain-Scheduling Approach)

  • 김영복
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.53-64
    • /
    • 2001
  • The gain-scheduling control technique is vary useful in the control problem incorporating time varying parameters which can be measured in real time. Based on these facts, in this paper the sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But, in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we assume that an plant parameter is varying and apply the gain-scheduling control technique design the anti-swing motion control system for the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

컨테이너 크레인의 흔들림 방지장치 개발에 관한 연구 (A Study on the Development of Residual Sway Motion Control System for the Container Crane)

  • 손유식;김영복
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.35-42
    • /
    • 2000
  • The sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying intertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the LMI approach and simultaneous optimization design method to design the anti-swing motion control system for the controlled plant. And the simulation result shows that the proposed control strategy is shown to be robust to disturbances like winds and initial sway motion.

  • PDF

$H^{\infty}$ Gain-Scheduling 기법을 이용한 컨테이너 크레인의 흔들임 제어에 관한 연구 (A Study on the Sway Control of a Container Crane Based on $H^{\infty}$ Gain-Scheduling Approach)

  • 김영복;정용길
    • 제어로봇시스템학회논문지
    • /
    • 제7권7호
    • /
    • pp.559-566
    • /
    • 2001
  • The sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. In this paper, we introduce and synthesize a new type of swing motion control system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mall applies inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the $H^{\infty}$ based gain-scheduling control technique to the anti-swing motion control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful for the case of time-varying system and, robust to disturbances such as winds and initial sway motion.

  • PDF

불확실 시스템을 고유구조 지정 슬라이딩 모드 제어 (Eigenstructure Assigned Sliding Mode Control for Uncertain System)

  • 전경한;김가규;전해진;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.799-805
    • /
    • 2001
  • In this paper, we propose eigenstructure assigned sliding mode control for mismatched uncertain system. Variable structure control has the sliding mode in which the system is robust against the uncertainty and the sliding motion depends upon the sliding surface. Therefore, the surface design is one of the important problems. Also in mismatched cases, the uncertainty may affect on the sliding motion and may cause unexpected instability of the system. Thus, that should be considered, too. For robust sliding mode against the mismatched uncertainty, we suggest the design method of the sliding surface using the eigenstructure assignment, define an index as the measure of the robustness which shows the size of affordable unstructured uncertainty, and present the computation method. And also we propose the controller which can ensure the sliding mode and prove the robust stability of the proposed controller by using Lyapunov method. Finally we show the appropriateness of the proposed scheme for the mismatched uncertainty via the example.

  • PDF