• Title/Summary/Keyword: robust model

Search Result 2,738, Processing Time 0.038 seconds

A Global Robust Optimization Using the Kriging Based Approximation Model (크리깅 근사모델을 이용한 전역적 강건최적설계)

  • Park Gyung-Jin;Lee Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1243-1252
    • /
    • 2005
  • A current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, the Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, a design procedure for global robust optimization is developed based on the kriging and global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Robustness is determined by the DACE model to reduce real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. As the postprocess, the first order second-moment approximation method is applied to refine the robust optimum. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

The construction of a robust model following system for an unkown plant

  • Morikawa, Youichi;Hyogo, Hidekazu;Kikuta, Akira;Kamiya, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.359-363
    • /
    • 1994
  • In this paper the system called the inverse model compensation system is proposed as a system whose input-output transfer function can be regarded as that of a model with uncertainty in spite of including an unknown plant. And their to construct the robust model following system, which is of low sensitivity and robust stability, in order to control the inverse model compensation system is proposed. The simulation experiments show that the robust model following system including the inverse model compensation system is practical and useful as a system which controls unknown plants.

  • PDF

Robust Optimization of Automotive Seat by Using Constraint Response Surface Model (제한조건 반응표면모델에 의한 자동차 시트의 강건최적설계)

  • 이태희;이광기;구자겸;이광순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.168-173
    • /
    • 2000
  • Design of experiments is utilized for exploring the design space and for building response surface models in order to facilitate the effective solution of multi-objective optimization problems. Response surface models provide an efficient means to rapidly model the trade-off among many conflicting goals. In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effects of variations, called uncertainties. However, the evaluation of feasibility robustness often needs a computationally intensive process. To reduce the computational burden associated with the probabilistic feasibility evaluation, the first-order Taylor series expansions are used to derive individual mean and variance of constraints. For robust design applications, these constraint response surface models are used efficiently and effectively to calculate variances of constraints due to uncertainties. Robust optimization of automotive seat is used to illustrate the approach.

  • PDF

Two Degree of Freedom Robust Controller Design of a Seeker Scan-Loop (탐색기 주사루프의 2자유도 강인제어기 설계)

  • Lee, Ho-Pyeong;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.157-165
    • /
    • 1995
  • The new formulation of designing the two degree of freedom(TDF) robust controller is proposed using $H_{\infty}$optimization and model matching method. In this formulation the feedback controller and feedforward controller are designed in a single step using $H_{\infty}$optimization procedure. Roughly speaking, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while the feedforward controller is used to improve the robust model matching properties of the closed loop system. The proposed formulation will be illustrated and evaluated on a seeker scan-loop. And the performances of TDF robust controller are compared with those of the $H_{\infty}$ controller designed using Loop Shaping Design Procedure proposed by McFarlane and Glover.lover.

  • PDF

A Structural Design of Microgyroscope Using Kriging Approximation Model (크리깅 근사모델을 이용한 마이크로 자이로스코프의 구조설계)

  • Kim, Jong-Kyu;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.149-154
    • /
    • 2008
  • The concept of robust design was introduced by Dr. G. Taguchi in the late 1940s, and his technique has become commonly known as the Taguchi method or the robust design. In this research, a robust design procedure for microgyroscope is suggested based on the kriging and optimization approaches. The kriging interpolation method is introduced to obtain the surrogate approximation model of true function. Robustness is calculated by the kriging model to reduce real function calculations. For this, objective function is represented by the probability of success, thus facilitating robust optimization. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method.

  • PDF

A Robust Optimization Using the Statistics Based on Kriging Metamodel

  • Lee Kwon-Hee;Kang Dong-Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1169-1182
    • /
    • 2006
  • Robust design technology has been applied to versatile engineering problems to ensure consistency in product performance. Since 1980s, the concept of robust design has been introduced to numerical optimization field, which is called the robust optimization. The robustness in the robust optimization is determined by a measure of insensitiveness with respect to the variation of a response. However, there are significant difficulties associated with the calculation of variations represented as its mean and variance. To overcome the current limitation, this research presents an implementation of the approximate statistical moment method based on kriging metamodel. Two sampling methods are simultaneously utilized to obtain the sequential surrogate model of a response. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method. Then, the simulated annealing algorithm of global optimization methods is adopted to find the global robust optimum. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

DESIGN AND VALIDATION OF ROBUST AND AUTONOMOUS CONTROL FOR NUCLEAR REACTORS

  • SHAFFER ROMAN A.;EDWARDS ROBERT M.;LEE KWANG Y.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.139-150
    • /
    • 2005
  • A robust control design procedure for a nuclear reactor has been developed and experimentally validated on the Penn State TRIGA research reactor. The utilization of the robust controller as a component of an autonomous control system is also demonstrated. Two methods of specifying a low order (fourth-order) nominal-plant model for a robust control design were evaluated: 1) by approximation based on the 'physics' of the process and 2) by an optimal Hankel approximation of a higher order plant model. The uncertainty between the nominal plant models and the higher order plant model is supplied as a specification to the ,u-synthesis robust control design procedure. Two methods of quantifying uncertainty were evaluated: 1) a combination of additive and multiplicative uncertainty and 2) multiplicative uncertainty alone. The conclusions are that the optimal Hankel approximation and a combination of additive and multiplicative uncertainty are the best approach to design robust control for this application. The results from nonlinear simulation testing and the physical experiments are consistent and thus help to confirm the correctness of the robust control design procedures and conclusions.

Autopilot Design with Two Degree of Freedom $H_{\infty}$ Control Method (2자유도 $H_{\infty}$제어기를 이용한 비행체 자동조종장치 설계)

  • 최광진;황준하;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1304-1307
    • /
    • 1996
  • In this paper, we present a robust Two Degree of Freedom (TDF) $H_{\infty}$ controllers for a missile system. The feedback controller is designed to meet robust stability and disturbance rejection specifications while the prefilter is used to improve the robust model matching properties of the closed loop system. As the perturbed model, we use the normalized coprim factor perturbations. These controllers are designed using $H_{\infty}$ optimization procedures, and applied to a missile model via simulation.

  • PDF

Solving Robust EOQ Model Using Genetic Algorithm

  • Lim, Sung-Mook
    • Management Science and Financial Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-53
    • /
    • 2007
  • We consider a(worst-case) robust optimization version of the Economic Order Quantity(EOQ) model. Order setup costs and inventory carrying costs are assumed to have uncertainty in their values, and the uncertainty description of the two parameters is supposed to be given by an ellipsoidal representation. A genetic algorithm combined with Monte Carlo simulation is proposed to approximate the ellipsoidal representation. The objective function of the model under ellipsoidal uncertainty description is derived, and the resulting problem is solved by another genetic algorithm. Computational test results are presented to show the performance of the proposed method.

Experimental Study of Robust Control considering Structural Uncertainties (구조물의 모델링 불확실성을 고려한 강인제어실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.501-508
    • /
    • 2000
  • It is demanded to find the dynamic model of a real structure to design a controller. However, as the structure has inherently infinite number of degree-of-freedom, it is impossible to obtain an exact dynamic model of the structure. Instead a reduction model with finite degree-of-freedom is used for the design of a controller. So there exists uncertainty between a real model and a reduction model which causes poor performance of control. All these uncertainties can degrade the control performance and even cause the control instability. Thus, robust control strategy considering the above uncertainties can be an alternative one to guarantee the performance and stability of the control. This study deals with the experimental verification of robust controller design for the active mass driver. $\mu$-synthesis technique is employed as a robust control strategy. Some weights are chosen based on the difference between the initial plant with which the controller is designed and the perturbed plant to be controlled having the actuator uncertainty. The robustness of $\mu$-synthesis technique is compared with the result of LQG strategy, which does not consider the uncertainty.

  • PDF