• 제목/요약/키워드: robust least squares estimation

검색결과 59건 처리시간 0.019초

적응적 M-estimators 강건 예측 알고리즘 (An Adaptive M-estimators Robust Estimation Algorithm)

  • 장석우;김진욱
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.21-30
    • /
    • 2005
  • 강건 예측 기법은 오류 자료(outliers)를 제거하고 정상 자료(non-outliers)만으로 모델의 파라미터를 구하는 통계적인 방법으로 잘 알려져 있다 기존의 문헌에 소개된 많은 강건 예측 알고리즘들이 있으나 컴퓨터 비전 및 영상 처리 분야에서 가장 많이 사용되는 알고리즘은 M-estimators와 LMS(least-median of squares) 방법이다. 이 중 M-estimators는 어파인 모델(affine model)의 파라미터 측정에 있어 최적의 방법으로 잘 알려져 있다. 그러나 M-estimators는 통계적인 효율성이 높지만 초기화가 적절히 수행되지 않으면 오류 자료를 제거하는 데 문제점을 가진다 따라서 본 논문에서는 이런 문제점을 해결하기 위해 연속적인 시그모이드(sigmoid) 가중치 함수를 사용하여 오류 자료와 정상 자료를 효과적으로 분리하면서 어파인 모델의 파라미터를 효과적으로 측정하는 적응적인 M-estimators 강건 예측 알고리즘을 제안한다. 실험에서는 기존의 강건 예측 방법과 제안된 적응적 강건 예측 방법의 성능을 비교 및 분석하여 제안된 방법의 우수함을 보인다.

  • PDF

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

음향 신호를 이용한 수중로봇의 위치추정 (Localization of an Underwater Robot Using Acoustic Signal)

  • 김태균;고낙용
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.

Diagnostic Study of Problems under Asymptotically Generalized Least Squares Estimation of Physical Health Model

  • Kim, Jung-Hee
    • 대한간호학회지
    • /
    • 제29권5호
    • /
    • pp.1030-1041
    • /
    • 1999
  • This study examined those problems noticed under the Asymptotically Generalized Least Squares estimator in evaluating a structural model of physical health. The problems were highly correlated parameter estimates and high standard errors of some parameter estimates. Separate analyses of the endogenous part of the model and of the metric of a latent factor revealed a highly skewed and kurtotic measurement indicator as the focal point of the manifested problems. Since the sample sizes are far below that needed to produce adequate AGLS estimates in the given modeling conditions, the adequacy of the Maximum Likelihood estimator is further examined with the robust statistics and the bootstrap method. These methods demonstrated that the ML methods were unbiased and statistical decisions based upon the ML standard errors remained almost the same. Suggestions are made for future studies adopting structural equation modeling technique in terms of selecting of a reference indicator and adopting those statistics corrected for nonormality.

  • PDF

반복형 위너 필터 방법에 기반한 재귀적 완전 최소 자승 알고리즘의 견실화 연구 (A study on robust recursive total least squares algorithm based on iterative Wiener filter method)

  • 임준석
    • 한국음향학회지
    • /
    • 제40권3호
    • /
    • pp.213-218
    • /
    • 2021
  • 입력과 출력에 동시에 잡음이 존재하는 경우 최소 자승법 보다는 완전 최소 자승법이 더 우수한 추정 성능을 보인다는 것이 알려져 있다. 완전 최소 자승법을 시계열 특성을 가지는 데이터에 적용할 경우 보다 실시간 성을 더하기 위해서 Recursive Total Least Squares(RTS) 알고리즘이 제안되어 있다. RTLS는 알고리즘 내에 존재하는 역행렬 계산에서 수치적인 불안정성을 지닌다. 본 논문에서는 RTLS와 유사한 수렴성을 지닐 뿐만 아니라 수치적 불안정성을 줄이기 위한 알고리즘을 제안한다. 이 알고리즘을 위해서 Iterative Wiener Filter(IWF)를 적용한 새로운 RTLS를 제안한다. 시뮬레이션을 통해서 수렴성이 기존의 RTLS와 유사할 뿐만 아니라 수치적 견실성이 기존 RTLS보다 향상되었다는 것을 보인다.

Identification of Regression Outliers Based on Clustering of LMS-residual Plots

  • Kim, Bu-Yong;Oh, Mi-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제11권3호
    • /
    • pp.485-494
    • /
    • 2004
  • An algorithm is proposed to identify multiple outliers in linear regression. It is based on the clustering of residuals from the least median of squares estimation. A cut-height criterion for the hierarchical cluster tree is suggested, which yields the optimal clustering of the regression outliers. Comparisons of the effectiveness of the procedures are performed on the basis of the classic data and artificial data sets, and it is shown that the proposed algorithm is superior to the one that is based on the least squares estimation. In particular, the algorithm deals very well with the masking and swamping effects while the other does not.

ROBUST ESTIMATION USING QUASI-SCORE ESTIMATING FUNCTIONS FOR NONLINEAR TIME SERIES MODELS

  • Cha, Kyung-Yup;Kim, Sah-Myeong;Lee, Sung-Duck
    • Journal of the Korean Statistical Society
    • /
    • 제32권4호
    • /
    • pp.385-399
    • /
    • 2003
  • We first introduce the quasi-score estimating function and applied the quasi-score estimating function to nonlinear time series models. We proposed the M quasi-score estimating functions bounded functions for the quasi-score estimating functions. Also, we investigated the asymptotic properties of quasi-likelihood estimators and M quasi-likelihood estimators. Simulation results show that the M quasi-likelihood estimators work better than the least squares estimators under the heavy-tailed distributions

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

가우시안 포락선 선형 첩 신호의 순시 주파수 추정을 통한 원전 내 계측 케이블의 고장점 진단 연구 (Instantaneous Frequency Estimation of the Gaussian Enveloped Linear Chirp Signal for Localizing the Faults of the Instrumental Cable in Nuclear Power Plant)

  • 이춘구;박진배;윤태성
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.987-993
    • /
    • 2013
  • Integrity of the control and instrumental cables in nuclear power plant is important to maintain the stability of the nuclear power plants. In order to diagnose the integrity of the cables, the diagnostic methods based on reflectometry have been studied. The reflectometry is a non-destructive method and it is applicable to diagnose the live cables. We introduce a Gaussian enveloped linear chirp reflectometry to diagnose the cables in the nuclear power plants. In this paper, we estimate the instantaneous frequency of the Gaussian enveloped linear chirp signal by using the weighted robust least squares filtering to localize the impedance discontinuities in the class 1E instrumental cable.

반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법 (A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods)

  • ;신상문
    • 품질경영학회지
    • /
    • 제46권1호
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.