• Title/Summary/Keyword: robust features

검색결과 720건 처리시간 0.031초

Identifying and Exploiting Trustable Users with Robust Features in Online Rating Systems

  • Oh, Hyun-Kyo;Kim, Sang-Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2171-2195
    • /
    • 2017
  • When purchasing an online product, a customer tends to be influenced strongly by its reputation, the aggregation of other customers' ratings on it. The reputation, however, is not always trustable since it can be manipulated easily by attackers who intentionally give unfair ratings to their target products. In this paper, we first address identifying trustable users who tend to give fair ratings to products in online rating systems and then propose a method of computing true reputation of a product by aggregating only those trustable users' ratings. In order to identify the trustable users, we list some candidate features that seem related significantly to the trustworthiness of users and verify the robustness of each of the features through extensive experiments. By finding and exploiting these robust features, we are able to identify trustable users and to compute true reputation effectively and efficiently based on fair ratings of those trustable users.

PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선 (Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA)

  • 김원규;강동중
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.820-828
    • /
    • 2013
  • 영상에서 임의의 점에 대한 고유한 특징을 계산하는 알고리즘은 파노라마 영상의 제작, 스테레오 영상의 획득, 물체 인식, 이미지 분석 등에 다양하게 사용되는 중요한 요소이다. 일반적으로 어떤 점의 특징은 스칼라 형태가 아닌 벡터형태로 나타나게 되는데, 무수히 많은 특징 점들을 서로 비교하는 작업은 매우 많은 계산량을 요구한다. 본 연구에서는 영상의 특징점 계산에 SURF(speeded up robust features)를 이용하였고, 이미지로부터 추출된 특징을 PCA(principal component analysis)기법을 이용하여 벡터의 차원을 축소하여 연결리스트 자료구조에 정렬한 다음 특징을 비교하는 기법을 제안한다. 제안된 특징의 비교 방법을 적용할 경우 기존 방법의 매칭 정확도는 유지한 상태에서 계산시간을 줄일 수 있는 것을 실험을 통하여 확인하였다.

조명 변화에 강인한 컬러정보 기반의 약병 분류 기법 (A Color-Based Medicine Bottle Classification Method Robust to Illumination Variations)

  • 김태훈;김기승;송영철;류강수;최병재;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제23권1호
    • /
    • pp.57-64
    • /
    • 2013
  • 본 논문에서는 약병의 크기와 색상정보 특징을 추출하여 약병영상 분류 기법을 제안한다. 약병영상 분류에 있어 유사한 크기와 모양을 지닌 약병이 다양하게 존재하므로, 약병의 한 가지 특징만으로는 약병을 분류하기가 어렵다. 이러한 약병의 분류 문제를 해결하기 위해 본 논문에서는 약병의 크기와 색상정보의 특징을 추출하여 약병을 분류하였다. 제안된 알고리즘의 첫 번째 단계에서는 약병영상에서 Red, Green, Blue의 이진화 문턱치(Binary threshold)를 이용하여 약병 영역의 MBR(Minimum Boundary Rectangle)을 추출하여 크기로 분류하였고, 두 번째 단계에서는 크기로 분류된 약병영상 가운데 조명의 조도 변화에 강인한 색상(Hue)정보와 RGB 각각의 채널에 대한 컬러 평균 비율 정보를 이용하여 약병을 분류하였으며, 마지막 단계에서는 SURF(Speeded Up Robust Features)알고리즘을 사용하여 데이터베이스에서 특징점을 추출한 후보군 약병영상과 입력 약병영상의 유사도가 가장 높은 약병영상을 검색하여 약병을 분류하였다. 실험을 통해 이러한 방법이 보다 효율적이고 신뢰성 있음을 입증하였다.

A Robust Fingerprint Matching System Using Orientation Features

  • Kumar, Ravinder;Chandra, Pravin;Hanmandlu, Madasu
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.83-99
    • /
    • 2016
  • The latest research on the image-based fingerprint matching approaches indicates that they are less complex than the minutiae-based approaches when it comes to dealing with low quality images. Most of the approaches in the literature are not robust to fingerprint rotation and translation. In this paper, we develop a robust fingerprint matching system by extracting the circular region of interest (ROI) of a radius of 50 pixels centered at the core point. Maximizing their orientation correlation aligns two fingerprints that are to be matched. The modified Euclidean distance computed between the extracted orientation features of the sample and query images is used for matching. Extensive experiments were conducted over four benchmark fingerprint datasets of FVC2002 and two other proprietary databases of RFVC 2002 and the AITDB. The experimental results show the superiority of our proposed method over the well-known image-based approaches in the literature.

Class-Based Histogram Equalization for Robust Speech Recognition

  • Suh, Young-Joo;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • 제28권4호
    • /
    • pp.502-505
    • /
    • 2006
  • A new class-based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not only compensating the acoustic mismatch between training and test environments, but also at reducing the discrepancy between the phonetic distributions of training and test speech data. The algorithm utilizes multiple class-specific reference and test cumulative distribution functions, classifies the noisy test features into their corresponding classes, and equalizes the features by using their corresponding class-specific reference and test distributions. Experiments on the Aurora 2 database proved the effectiveness of the proposed method by reducing relative errors by 18.74%, 17.52%, and 23.45% over the conventional histogram equalization method and by 59.43%, 66.00%, and 50.50% over mel-cepstral-based features for test sets A, B, and C, respectively.

  • PDF

휴대 단말을 위하여 개선된 Speeded Up Robust Features(SURF) 알고리듬의 성능 측정 및 분석 (Performance Evaluation and Analysis of Modified Speeded Up Robust Features(SURF) for Mobile Phones)

  • 서정진;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.276-279
    • /
    • 2011
  • 최근 스마트폰의 카메라를 이용한 시각 검색(Visual Search) 어플리케이션(Application)을 많은 사람들이 이용하고 있고, 이러한 시각 검색 어플리케이션은 여러 가지 특징 추출 방법을 사용하고 있다. 본 논문에서는 특징 추출 방법 중 하나인 Speeded Up Robust Features (SURF)를 사용하여 모바일 환경에 적합한 특징 추출 및 정합 방법에 대하여 기술한다. 모바일 기기들은 기존의 일반 PC환경에 비해 비교적 낮은 성능의 하드웨어 조건을 가지고 있다. 하지만 SURF 특징점 추출 방법 및 정합 방법은 계산량이 많고 복잡하여 실시간 및 모바일 환경에 사용하기엔 제약이 따른다. 모바일 환경에서 높은 성능을 내기 위해 기술자(Descriptor) 차원 감소와 라플라시안(Laplacian) 부호를 이용한 정합, 그리고 최적의 거리 비율로 정합하는 방법을 제안한다.

  • PDF

클래스 히스토그램 등화 기법에 의한 강인한 음성 인식 (Robust Speech Recognition by Utilizing Class Histogram Equalization)

  • 서영주;김회린;이윤근
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.145-164
    • /
    • 2006
  • This paper proposes class histogram equalization (CHEQ) to compensate noisy acoustic features for robust speech recognition. CHEQ aims to compensate for the acoustic mismatch between training and test speech recognition environments as well as to reduce the limitations of the conventional histogram equalization (HEQ). In contrast to HEQ, CHEQ adopts multiple class-specific distribution functions for training and test environments and equalizes the features by using their class-specific training and test distributions. According to the class-information extraction methods, CHEQ is further classified into two forms such as hard-CHEQ based on vector quantization and soft-CHEQ using the Gaussian mixture model. Experiments on the Aurora 2 database confirmed the effectiveness of CHEQ by producing a relative word error reduction of 61.17% over the baseline met-cepstral features and that of 19.62% over the conventional HEQ.

  • PDF

2단계 부분 어텐션 네트워크를 이용한 가려짐에 강인한 군용 차량 검출 (Occlusion Robust Military Vehicle Detection using Two-Stage Part Attention Networks)

  • 조선영
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.381-389
    • /
    • 2022
  • Detecting partially occluded objects is difficult due to the appearances and shapes of occluders are highly variable. These variabilities lead to challenges of localizing accurate bounding box or classifying objects with visible object parts. To address these problems, we propose a two-stage part-based attention approach for robust object detection under partial occlusion. First, our part attention network(PAN) captures the important object parts and then it is used to generate weighted object features. Based on the weighted features, the re-weighted object features are produced by our reinforced PAN(RPAN). Experiments are performed on our collected military vehicle dataset and synthetic occlusion dataset. Our method outperforms the baselines and demonstrates the robustness of detecting objects under partial occlusion.

강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법 (Robust Feature Selection and Shot Change Detection Method Using the Neural Networks)

  • 홍승범;홍교영
    • 한국멀티미디어학회논문지
    • /
    • 제7권7호
    • /
    • pp.877-885
    • /
    • 2004
  • 본 논문은 여러 가지 장면 검출 방식들 중 강인한 특징 변수들의 선별과 신경망을 이용하여 향상된 장면 전환점 검출 기법을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임 간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임 간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 단일 특징보다는 상호 보완 관계를 갖는 강인한 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 본 논문에서 강인한 특징 변수들을 선택하기 위해, 데이터 마이닝 기법 중 대표적인 CART(classification and regression tree)를 이용하고, 다차원 변수에 따른 임계값을 선정하기 위해 역전파 신경망(backpropagation neural net)을 이용한다. 제안한 방식과 대표적인 특징 추출인 PCA(principal component analysis)기법을 비교하여 특징 변수의 추출 성능을 평가한다. 실험 결과에 따라 제안된 방식이 PCA 기법과 비교하여 우수한 성능이 나타남을 확인한다.

  • PDF

특징들의 공유에 의한 기울어진 얼굴 검출 (Rotated face detection based on sharing features)

  • 송영모;고윤호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.31-33
    • /
    • 2009
  • Face detection using AdaBoost algorithm is capable of processing images rapidly while having high detection rates. It seemed to be the fastest and the most robust and it is still today. Many improvements or extensions of this method have been proposed. However, previous approaches only deal with upright faces. They suffer from limited discriminant capability for rotated faces as these methods apply the same features for both upright and rotated faces. To solve this problem, it is necessary that we rotate input images or make independently trained detectors. However, this can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. This paper proposes a robust algorithm for finding rotated faces within an image. It reduces the computational and sample complexity, by finding common features that can be shared across the classes. And it will be able to apply with multi-class object detection.

  • PDF