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Abstract 
 

When purchasing an online product, a customer tends to be influenced strongly by its 
reputation, the aggregation of other customers’ ratings on it. The reputation, however, is not 
always trustable since it can be manipulated easily by attackers who intentionally give unfair 
ratings to their target products. In this paper, we first address identifying trustable users who 
tend to give fair ratings to products in online rating systems and then propose a method of 
computing true reputation of a product by aggregating only those trustable users’ ratings. In 
order to identify the trustable users, we list some candidate features that seem related 
significantly to the trustworthiness of users and verify the robustness of each of the features 
through extensive experiments. By finding and exploiting these robust features, we are able 
to identify trustable users and to compute true reputation effectively and efficiently based on 
fair ratings of those trustable users. 
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1. Introduction 

With a few clicks of a mouse, we can buy any products on the Internet. Behind these 
convenient purchases, there are considerable risks on uncertain products. 

Customers can share their experiences on purchased products with other potential buyers 
via evaluation. The simplest way for consumers to express their levels of satisfaction with 
their purchases is to participate in online ratings. The overall buyers’ satisfaction on a 
product can be quantified as the aggregated score of all the ratings given to the product and 
becomes available to other potential buyers. In this paper, we call this aggregated score for 
the product its reputation. The reputation is known to significantly influence other potential 
buyers to decide their final purchasing [5][7][14][16][18]. 

If a large number of buyers take part in giving ratings to a product with honesty, the 
reputation is trustable and really helps potential buyers to purchase products [8][11][13][20]. 
Unfortunately, the reputation does not seem that trustable when reputation attackers (RAs), 
who intentionally give high (or low) ratings to target products, participate in ratings 
[1][3][9][15][17][21][24].  

False reputation, the reputation distorted by RAs, provides wrong information on 
products to potential buyers, thereby causing potential buyers to make a wrong decision on 
purchasing products [17]. Thus, we need to exclude as many RAs as possible but to include 
as many trustable users (TUs), who rate products with honesty, as possible in the process of 
reputation computation to get true reputation on products. 

In order to identify TUs in online rating systems, we need to find good features to 
determine their trustworthiness by adopting the techniques from feature engineering [25], 
which is the process of analyzing domain specific data to extract some fine-tuned features. 
The features of user trustworthiness obtained by our feature engineering approach could be 
fundamental to practical applications such as user ranking, outlier detection, and reliable 
reputation. Because building feature models and suggesting good features in a specific 
domain is not only difficult but also time-consuming work [25], we focus on feature 
engineering to extract good features to determine trustworthiness of users in online rating 
systems. 

Coming up with the features related to user trustworthiness, we analyze user rating 
behaviors to be able to identify their relationships to the features in question. For example, if 
the number of ratings given by a user is selected as such a feature, this may indicate that a 
user having more ratings is more likely to be considered as a TU than a user having less 
ratings. If we successfully find these features, we can identify TUs by using them and 
compute true reputations on products from only those TUs. As a result, the true reputation 
could be obtained by including TUs and excluding RAs. 

The goal of RAs is to boost the reputation of a product by giving unfairly high ratings or 
to deteriorate the reputation of a product by giving unfairly low ratings. In the recommender 
systems area, RAs are called shilling attackers. Recommender systems are known vulnerable 
to shilling attackers who are malicious users to insert fake profiles [2][3][6][12][15][22][23] . 

In this paper, we first exploit existing features used to identify RAs to measure the 
trustworthiness of users. For example, the rating deviation from mean agreement (RDMA), 
known as one of statistical features of RAs, increases when a user has few ratings and his 
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rating is deviated from the product reputation while that product has been evaluated by only 
a few users [3]. A user with high RDMA is regarded as an RA. Conversely, if a user has low 
RDMA, he should be regarded as a TU since he may have many ratings whose scores are 
closed to the product reputation evaluated by a number of users. 

According to the result of social science studies obtained from analyzing the 
characteristics of online information, the reliability of online information causes user 
behaviors as follows [4][19]. The reliability tends to increase when an information producer 
has no bias but maintains an objective perspective (i.e., objectivity) and has a consistent 
viewpoint (i.e., consistency) when creating his information. Also, it tends to increase when 
an information producer frequently interacts with the users who access the information 
produced by him (i.e., activity). Thus, we first add the notions of activity, objectivity, and 
consistency as candidate features to recognize TUs. 

In summary, we set candidate features that seem beneficial to determining the 
trustworthiness of users in online rating systems. The candidate features consist of the 
features which are used to identify RAs in the recommender systems area and the features of 
the activity, objectivity, and consistency. We normalize a value of each feature for a user to 
get a score expressing his trustworthiness. The effectiveness of each feature is measured by 
learning existing data to understand the correlation between the trustworthiness and the 
feature. To find the degree of relevance of a feature to the trustworthiness, we construct a 
variety of scenarios where false reputation occurs by injecting different types of RAs into our 
experimental data. 

We select high ranked users with relatively high values of a feature and then compute the 
reputation on products by using only those high ranked users according to the feature. If the 
reputation thus obtained is closer to the ground truth, we consider the feature highly relevant 
to the user’ trustworthiness and thus very robust to RAs. As ground truth, we use the 
reputation on products without injecting RAs. 

The contributions of this paper are summarized as follows. First, we examine a variety of 
features extracted based on the results by analyzing user rating behaviors and from the social 
science studies. Second, we verify correlation between the trustworthiness and each of user 
features. Third, we suggest robust features to be used for true reputation against RAs and 
also the number of users necessary for computing true reputation through extensive 
experiments. 

2. Related Work 
In online rating systems, people do not want to listen to the opinions of attackers. 

Increasing is the demand to build the predictive models for distinguishing normal users from 
attackers as well as for identifying trustable users [17]. Creating domain-specific features is 
important to build predictive models and affects the prediction results. Feature engineering is 
the process of analyzing domain specific data to extract fine-tuned features [25]. The fine-
tuned features help to build simpler and more representable predictive models, thereby often 
producing better prediction results [26][27]. Because of the importance of finding such 
features, this paper focuses on feature engineering to extract and evaluate those features 
related to the trustworthiness of users in online ratting systems. 
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Numerous studies have been conducted to improve the trustworthiness of information in 
online shopping malls by analyzing the rating behaviors of attackers who have participated 
in the rating system to manipulate the information. The “shilling attackers” are malicious 
users who try to insert fake profiles consisting of manipulated ratings into recommendation 
systems in order to increase the popularity of target items. Since the first introduction of 
shilling attacks [10], many different types of shilling attackers, such as random attackers, 
average attackers, segment attackers, bandwagon attackers, and love/hate attackers have 
been proposed in the literature [2][3][15]. Keeping pace with the researches on shilling 
attacks, researches on extracting features that characterize shilling attackers have also been 
performed [2][3][9][15][24]. 

Oh et al. [17] introduced dangerous situations where false reputation occurs and 
characterized dangerous users who cause false reputation. In order to solve the problem of 
false reputation, they proposed TRUEREPUTATION, an algorithm that iteratively adjusts 
the reputation based on the confidence of customer ratings. To determine the confidence of a 
rating, they exploited three key factors of activity, objectivity, and consistency. These three 
factors are well known in social science to be suitable for determining the confidence. They 
reinterpreted these factors in the context of online ratings.  

Creating the features of user trustworthiness and computing true reputation can be used 
fundamentally in various practical applications. Hong et al. [28][29][30] studied reputation-
based cooperation mechanism to enhance cooperative behaviors among self-interested 
individuals. By adopting our feature models to find trustable users, a certain reliable group 
among selfish individuals can be found where they can share information about their 
trustworthiness to improve their cooperation. Furthermore, adopting the concept of 
trustworthiness to practical applications such as collaborative recommender systems [31], 
personalized search engines [33], and discriminative classifiers [32] would be helpful to 
improve the performance and effectiveness of those applications. 

3. User features 
We introduce three equations on the activity, objectivity, and consistency of users. We also 
present various features that characterize RAs and propose a normalization method to 
transform the features of RAs into the features indicating the trustworthiness of users. We 
assume that the rating patterns of RAs are quite opposed to those of TUs. The descriptions 
and equations of all the features are shown as follows: 

Activity [17]: A user who has more ratings could be considered more active. The user’s 
activity, denoted by 𝐴𝑢, is quantified by the frequency of his ratings. 

𝐴𝑢 = Ψ(|𝐑𝑢|,𝛼𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ,𝜇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 

where 
Ψ(|𝐑𝑢|,𝛼𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 , 𝜇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 

1

1+𝑒−𝛼𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(|𝐑𝑢|−𝜇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)
 

where 𝐑𝑢 is a set of ratings by user u. The Ψ function is a sigmoid function for 
normalization of |𝐑𝑢| to keep the returned value in the range of [0, 1]. Parameters 𝛼𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  
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and 𝜇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 determine the slope and adjust the midpoint of the curve of Ψ, respectively. In 
order that Ψ should be closer to 1 when |𝐑𝑢| gets very large, 𝛼𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  should be a positive 
number. In order to distribute |𝐑𝑢| evenly in the range of [0, 1], we use 𝛼𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  = 0.02, 
determined by our experiments. We set 𝜇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 to be the average number of ratings per user. 

Objectivity [17]: The user’s objectivity, denoted by 𝑂𝑢, is the normalized average of the 
objectivities of the ratings by that user. The objectivity of a rating, 𝑂𝑟 , indicates that the user 
with a rating r has performed a more objective evaluation on item m when 𝑂𝑟  is closer to 0. 
𝑂𝑟  is computed based on the reputation, denoted by 𝑟̅𝑚, and the standard deviation, denoted 
by 𝑠𝑚, as follows: 

𝑂𝑟 = |
𝑟 − 𝑟̅𝑚
𝑠𝑚

| 

𝑂𝑢 is computed by the average of the objectivities in the ratings by that user. If it is closer 
to 0, the user is considered more objective. 

𝑂𝑢 =
1

|𝐑𝑢|
� 𝑂𝑟
𝑟∈𝐑𝑢

 

In order to regard 𝑂𝑢  as the trustworthiness of a user, we need 𝑜𝑢∗ , computed by 
normalizing 𝑂𝑢. We consider the user whose 𝑜𝑢∗  is ‘1’ to be the most objective user. 

𝑜𝑢∗ =  Ψ(𝑂𝑢, 𝛼𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ,𝜇𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 

𝛼𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 needs to be a negative number in order that Ψ should be close to 1 when 𝑂𝑢 
gets closer to 0. Based on our preliminary experiments, we set 𝛼𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 to be -2.5 and 
𝜇𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 to be the average of all users’ objectivities. 

Consistency: A user whose rating behavior conforms to the most common behavior in the 
online rating system could be considered consistent. The user’s consistency, denoted by 𝐶𝑢 , 
is defined by the variation in the objectivities of his ratings. 

𝐶𝑢 =
1

|𝐑𝑢|
�(𝑂𝑟 − 𝑂𝑢)2
𝑟∈𝐑𝑢

 

A user who has many ratings is difficult to keep his consistency. The Weighted 
Consistency (WC) places a high weight on a user if he keeps his consistency despite many 
ratings. It differs from consistency only in that the number of his ratings is square rooted in 
the denominator outside the sum, thus relatively increasing the weight associated with users 
having many ratings. 

𝐶𝑢 =
1

�|𝐑𝑢|
�(𝑂𝑟 − 𝑂𝑢)2
𝑟∈𝐑𝑢
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Based on our preliminary experiments, we set 𝛼𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  to be -10 and 𝛼𝑊𝐶  to be -8. 
𝜇𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is set as the average of all users’ 𝐶𝑢  and 𝜇𝑊𝐶  is set as the average of all users’ 
𝑊𝐶𝑢. 

From now on, various features representing the rating behaviors of RAs are introduced. 
As explained earlier, we assume the behavior of TUs is directly opposed to that of RAs. 
When the values of features to detect RAs get closer to 0, we need to make the values to 
detect TUs closer to 1. 

 

Rating Deviation from Mean Agreement (RDMA) [3]. RDMA measures the average 
disagreement of a rating of a user with those of other users for every item, weighted by the 
inverse of the number of ratings for that item. The feature is computed as follows: 

𝑅𝐷𝑀𝐴𝑢 =
∑ |𝑟𝑢,𝑚 − 𝑟̅𝑚|

𝑙𝑚𝑚∈𝐍𝑢

|𝐍𝑢|
 

where 𝐍𝑢 is a set of items rated by user u, 𝑟𝑢,𝑚 is the rating given by user u to item m, 
𝑙𝑚 is the number of ratings assigned for item m by all users, and 𝑟̅𝑚 is the average of these 
ratings, the reputation of the item. In order to use 𝑅𝐷𝑀𝐴𝑢, we need to normalize it as 
follows: 

𝑅𝐷𝑀𝐴𝑢∗ = Ψ(𝑅𝐷𝑀𝐴𝑢,𝛼𝑟𝑑𝑚𝑎 , 𝜇𝑟𝑑𝑚𝑎) 

𝛼𝑟𝑑𝑚𝑎 needs to be a negative number in order that Ψ should be close to 1 when 
𝑅𝐷𝑀𝐴𝑢 gets closer to 0. Based on our preliminary experiments, we set 𝛼𝑟𝑑𝑚𝑎 to be -250. 
𝜇𝑟𝑑𝑚𝑎  is set as the average of all users’ 𝑅𝐷𝑀𝐴𝑢. 

Weighted Degree of Agreement (WDA) [15]. WDA, derived from RDMA, measures the sum 
of the differences of a user’s ratings from the items’ reputations divided by the number of 
ratings on each item. The feature is computed as follows: 

𝑊𝐷𝐴𝑢 = �
|𝑟𝑢,𝑚 − 𝑟̅𝑚|

𝑙𝑚𝑚∈𝐍𝑢

 

𝑊𝐷𝐴𝑢∗ = Ψ(𝑊𝐷𝐴𝑢,𝛼𝑤𝑑𝑎 , 𝜇𝑤𝑑𝑎) 

Based on our preliminary experiments, we set 𝛼𝑤𝑑𝑎 to be -1.5. 𝜇𝑤𝑑𝑎 is set as the 
average of all users’ 𝑊𝐷𝐴𝑢. 

Weighted Deviation from Mean Agreement (WDMA) [15]. WDMA, derived from RDMA, 
places a higher weight on rating disagreement in parse items by squaring the denominator 
inside the sum, thus reducing the weight associated with the items rated by many users. The 
feature is computed as follows: 
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𝑊𝐷𝑀𝐴𝑢 =
∑ |𝑟𝑢,𝑚 − 𝑟̅𝑚|

𝑙𝑚
2𝑚∈𝐍𝑢

|𝐍𝑢|
 

𝑊𝐷𝑀𝐴𝑢∗ = Ψ(𝑊𝐷𝑀𝐴𝑢,𝛼𝑤𝑑𝑚𝑎 , 𝜇𝑤𝑑𝑚𝑎) 

Based on our preliminary experiments, we set 𝛼𝑤𝑑𝑚𝑎 to be -2,000 and 𝜇𝑤𝑑𝑚𝑎 to be 
the average of all users’ 𝑊𝐷𝑀𝐴𝑢. 

Degree of Similarity with Top Neighbors (DegSim) [3]. DegSim captures the average 
similarity of a user’s k nearest neighbors. DegSim intends that RAs are likely to have a 
higher similarity with their top-k closest neighbors than authentic users. The feature is 
computed as follows: 

𝐷𝑒𝑔𝑆𝑖𝑚𝑢 =
∑ 𝑊𝑢,𝑣𝑉∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢)

𝑘
 

where 𝑊𝑢,𝑣 is the similarity between users u and v computed by Pearson’s correlation 
and k is the number of neighbors.  

𝑑𝑒𝑔𝑠𝑖𝑚𝑢
∗ = Ψ(𝑑𝑒𝑔𝑠𝑖𝑚𝑢,𝛼𝑑𝑒𝑔𝑠𝑖𝑚 ,𝜇𝑑𝑒𝑔𝑠𝑖𝑚) 

Based on our preliminary experiments, we set 𝛼𝑑𝑒𝑔𝑠𝑖𝑚 to be -5. 𝜇𝑑𝑒𝑔𝑠𝑖𝑚 is set as the 
average of all users’ 𝐷𝑒𝑔𝑆𝑖𝑚𝑢. 

𝐷𝑒𝑔𝑆𝑖𝑚′[15], a variation of DegSim, penalizes the average similarity if a neighbor 
shares fewer than d ratings in common. For normalization, 𝐷𝑒𝑔𝑆𝑖𝑚′  use different 
parameter settings, 𝛼𝑑𝑒𝑔𝑠𝑖𝑚′  and 𝜇𝑑𝑒𝑔𝑠𝑖𝑚′  according to the value of d1. 

Length Variance (LengthVar) [15]. LengthVar is designed to detect those users who have 
abnormally lots of ratings than authentic users by capturing how much the length (i.e., the 
number of ratings) of a user’s profile differs from the average length among all users in a 
database. The feature is computed as follows: 

𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑎𝑟𝑢 =
||𝐍𝑢|− |𝐍�||

∑ (|𝐍𝑝| − |𝐍�|)2𝑝∈𝐔
 

𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑎𝑟𝑢∗ = Ψ(𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑎𝑟𝑢,𝛼𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑎𝑟, 𝜇𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑎𝑟) 

where U is a set of all users and N is a set of all items. Based on our preliminary 
experiments, we set 𝛼𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑎𝑟 to be -200,000 and 𝜇𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑎𝑟 to be the average of all 
users’ 𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑎𝑟𝑢. 

1 The detailed parameter settings of 𝐷𝑒𝑔𝑆𝑖𝑚′ are shown in the section of experimental results. 
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Filler Mean Variance (FMV) [15]. To measure FMV, 𝐏𝑢,𝑇  and 𝐏𝑢,𝐹  need to be defined. 
𝐏𝑢,𝑇 is a set containing the items (suspected to be targets) rated by a user u, and 𝐏𝑢,𝐹 is a 
set containing all the other items except 𝐏𝑢,𝑇. FMV is designed to compute the mean 
variance between the non-target items in 𝐏𝑢,𝐹, the reputation for each item. The feature is 
computed as follows: 

𝐹𝑀𝑉𝑢 =
∑ (𝑟𝑢,𝑚 − 𝑟̅𝑢)2𝑚∈𝐏𝑢,𝐹

|𝐏𝑢,𝐹|
 

FMV is computed twice, first when 𝐏𝑢,𝑇 consists of items assigned with the maximum 
rating, and second when 𝐏𝑢,𝑇 consists of items assigned with the minimum rating. 

𝐹𝑀𝑉𝑢∗ = Ψ(𝐹𝑀𝑉𝑢,𝛼𝑓𝑚𝑣 ,𝜇𝑓𝑚𝑣) 

where parameters, 𝛼𝑓𝑚𝑣 and 𝜇𝑓𝑚𝑣, are assigned differently according to the goal of 
user u (“push” or “nuke”). “Push” means that the attacker gives a maximum rating to 
promote the item while “nuke” means that the attacker gives a minimum rating to demote the 
item. If we set the goal of a user as “push”, we set 𝛼𝑓𝑚𝑣 to be 3. If we set the goal of the 
user as “nuke”, we set 𝛼𝑓𝑚𝑣 to be 0.5. 𝜇𝑓𝑚𝑣 is assigned with the average of all users’ 
𝐹𝑀𝑉𝑢. 

Filler Mean Difference (FMD) [15]. FMD is the average of the absolute differences 
between the user’s rating and the average rating over all the items in 𝐏𝑢,𝐹 (rather than the 
squared value in FMV). The parameters, 𝛼𝑓𝑚𝑑  and 𝜇𝑓𝑚𝑑 , are assigned differently 
according to the goal of a user u. 𝛼𝑓𝑚𝑑  and 𝑢𝑓𝑚𝑑  are assigned with exactly the same 
values as 𝛼𝑓𝑚𝑣 and 𝜇𝑓𝑚𝑣. 𝑢𝑓𝑚𝑑  is assigned with the average of all users’ 𝐹𝑀𝐷𝑢. 

Profile Variance (PV) [15]. PV is simply the variance over all the ratings assigned to all the 
items in 𝐏𝑢,𝐹. If we set the goal of the user as “push”, we set 𝛼𝑃𝑉  to be 2.5. If we set the 
goal of the user as “nuke”, we set 𝛼𝑃𝑉  to be 2.5. 𝜇𝑃𝑉  is assigned with the average of all 
users’ 𝑃𝑉𝑢. 

Filler Mean Target Difference (FMTD) [15]. FMTD is designed to detect RAs who target a 
specific group of items. The attackers give the maximum ratings to the target items, 𝐏𝑢,𝑇 
and randomly chosen ratings to other non-target items called the filler items, 𝐏𝑢,𝐹. FMTD is 
the difference between the average of the ratings on 𝐏𝑢,𝐹 and the average of the ratings on 
𝐏𝑢,𝐹. The feature is computed as follows: 

𝐹𝑀𝑇𝐷𝑢 = |(
∑ 𝑟𝑢,𝑚𝑚∈𝐏𝑢,𝐹

�𝐏𝑢,𝑇�
) − (

∑ 𝑟𝑢,𝑚𝑚∈𝐏𝑢,𝐹

|𝐏𝑢,𝐹|
)| 
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where 𝑟𝑢,𝑚  is the rating given by user u to item m. Based on our preliminary 
experiments, we set 𝛼𝑓𝑚𝑡𝑑 to be -1.5. 𝜇𝑓𝑚𝑡𝑑  is assigned with the average of all users’ 
𝐹𝑀𝑇𝐷𝑢. 

Target Model Focus (TMF) [15]. A single attacker cannot actually influence the whole 
recommender system. A substantial group of attackers need to give the manipulated ratings 
to the target item to achieve what they aim at. To measure TMF for a user, we need to firstly 
define 𝐹𝑚 (Focus value of item m). 𝐹𝑚 is the degree of a given item m being targeted by 
attackers. TMF is the focus value of the item at which a given user has targeted. The item of 
the highest TMF would be attacked. The feature is computed as follows: 

𝑇𝑀𝐹𝑢 = max
𝑚∈𝐏𝑢,𝑇

𝐹𝑚 

𝑇𝑀𝐹𝑢∗ = Ψ(𝑇𝑀𝐹𝑢,𝛼𝑡𝑚𝑓 , 𝜇𝑡𝑚𝑓) 

If we set the goal of the user as “push”, we set 𝛼𝑡𝑚𝑓 to be -0.8. If we set the goal of the 
user as “nuke”, we set 𝛼𝑡𝑚𝑓 to be -0.2. 𝜇𝑡𝑚𝑓 is assigned with the average of all users’ 
𝑇𝑀𝐹𝑢. 

4. Performance evaluation 

4.1 Experimental Setup 
In online rating systems, it is important to provide true reputation of a product by 
aggregating trustable users’ ratings. Our goal is to employ user features for including as few 
RAs and many TUs as possible in computing true reputation. The state of the art algorithm, 
TRUE-REPUTATION [17], uses all the users to calculate the reputations of products. 
Consequently, TRUE-REPUTATION can allow the ratings of RAs to be included in the 
calculation of a reputation of a product. Also, TRUE-REPUTATION performs the two steps 
(calculating the confidence of user ratings and adjusting the reputation of products) 
iteratively until all the reputations converge to a stable state. On the other hand, our approach 
uses only a small part of users that are TUs identified by our robust features. Thus, our 
approach enables to avoid the influence of unfair ratings of RAs. Also, our approach (just 
aggregating the ratings of TUs) does not require a complex process, thus saving a lot of time 
in computation. 

To verify the effectiveness of our features identified, we generated various types of RAs 
and constructed scenarios that produce false reputation by injecting the RAs into the 
MovieLens 2  dataset. In our experiments, newly-released or unpopular movies having 
90~110 are considered to be in a dangerous situation, where false reputation can easily occur. 
Among them, the movies with reputation higher than 3.53 (average reputation over all 
movies in MovieLens) are targeted for “nuke” and the others are for “push”. We assume that 
users in MovieLens are ordinary users who rate the movies reasonably. 

2 The MovieLens dataset has 100,000 ratings with the scale from 1 to 5 for 1,682 movies by 943 users. 
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We generated six types of RAs, which can be further divided into “push” or “nuke” to 
make target items more or less likely to be recommended, respectively. The RA profile 
consists of the following components: a target item (𝑚𝑇), a set of selected items (𝐌𝑠) that 
are selected differently depending on the attack types, a set of filler items (𝐌𝐹) that are 
chosen randomly, and a set of unrated items (𝐌 = 𝐌− (𝑚𝑇 ∪𝐌𝑠 ∪ 𝐌𝐹 ). The six types of 
RAs are summarized in Table 1. 

Table 1. Summary of RAs 

Attack 
Model 

Attack 
Type 𝐌𝑠 𝐌𝐹 , 𝐌∅ 𝑚𝑇 

Average push/ 
nuke Not used 

filler items, ratings 
assigned with 

normal distribution 
around item mean 

The items of 𝐌 that are not in 
the union of  

𝑚𝑇 and 𝐌F, no ratings 

The target 
item, 

𝑟𝑚𝑎𝑥/𝑟𝑚𝑖𝑛 

Random push/ 
nuke Not used 

filler items, ratings 
assigned with 

normal distribution 
around system mean 

The items of 𝐌 that are not in 
the union of  

𝑚𝑇 and 𝐌F, no ratings 

The target 
item, 

𝑟𝑚𝑎𝑥/𝑟𝑚𝑖𝑛 

Selected 
Popular push Popular 

items,  𝑟𝑚𝑎𝑥 

filler items, ratings 
assigned with 

normal distribution 
around system mean 

The items of 𝐌 that are not in 
the union of 

𝑚𝑇, 𝐌s, and 𝐌F, no ratings 

The target 
item, 
𝑟𝑚𝑎𝑥 

Segment push 

Items chosen 
to define 

the segment, 
𝑟𝑚𝑎𝑥 

filler items, 𝑟𝑚𝑖𝑛 
The items of 𝐌 that are not in 

the union of 
𝑚𝑇, 𝐌s, and 𝐌F, no ratings 

The target 
item, 
𝑟𝑚𝑎𝑥 

Love/Hate nuke Not used filler items, 𝑟𝑚𝑎𝑥 
The items of 𝐌 that are not in 

the union of  
𝑚𝑇 and 𝐌F, no ratings 

The target 
item, 
𝑟𝑚𝑖𝑛 

Reverse 
Selected 
Popular 

nuke 
Widely 
disliked 

items, 𝑟𝑚𝑖𝑛 

filler items, ratings 
assigned with 

normal distribution 
around system mean 

The items of 𝐌 that are not in 
the union of 𝑚𝑇, 𝐌s, and 𝐌F, 

no ratings 

The target 
item, 
𝑟𝑚𝑖𝑛 

 

For generating RAs, we varied three factors: (1) the numbers of RAs added to MovieLens, 
(2) the types of RAs, and (3) the rating frequencies of RAs. 

First, we varied the number of RAs attacking a target movie from 10% of its total number 
of ratings to 30% in increment of 10%. Second, we used six different types of RAs. Third, 
we chose 10 target movies and inserted each type of RAs to them. The number of ratings for 
each type of RA is set as 50, 100, and 150. 

In order to verify the effectiveness of each feature, we computed the scores of all the 
features of users who gave ratings to the target item under the scenarios where false 
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reputation occurs. For each feature, users are ranked according to their score of the feature. 
By using the top-k percent users, the reputation of the target item can be temporarily 
computed. As this reputation is closer to the ground truth, we consider the feature to be more 
related to the user trustworthiness (i.e., more robust). As ground truth, we used the reputation 
of the target item computed before injecting RAs. 

When computing the reputation only by the selected users, we will have a natural 
question “how many users do we choose?” 

True reputation can be obtained by including as many TUs as possible but excluding as 
many RAs as possible. When computing the reputation on an item, we varied the portion of 
users used in computing reputation from 10% to 100% in step of 10%. 

Basically, the effectiveness of each feature is evaluated by the difference between the 
reputation with RAs and the reputation without RAs, as shown in Equation 1. 

𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑒 (𝑅𝐶𝑅) =  |𝑅 𝑤𝑖𝑡ℎ 𝑅𝐴𝑠 − 𝑅 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑅𝐴𝑠|
𝑅  𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑅𝐴𝑠

, (R: reputation)          
(1) 

As RCR based on selected users gets smaller, we regard the feature to be more robust to 
RAs. 

In order to find most robust features to get true reputation, features need to be compared 
with one another. As described above, the effectiveness of a feature is basically measured by 
RCR. However, the reputation can be varied according to the number of selected users. 

When measuring the effectiveness of a feature, the smaller users participate in computing 
the reputation, the more weight we place on RCR. The effectiveness of a feature, Feature 
Trustworthiness (FT), is defined as follows: 

𝐹𝑒𝑡𝑢𝑟𝑒 𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑖𝑛𝑒𝑠𝑠 (𝐹𝑇) =
𝑅𝐶𝑅�𝑅 𝑤𝑖𝑡ℎ 𝑡𝑜𝑝 10% 𝑜𝑓 𝐔𝑚,𝑓

𝑟𝑎𝑛𝑘� + 1
2

 𝑅𝐶𝑅�𝑅 𝑤𝑖𝑡ℎ 𝑡𝑜𝑝 20% 𝑜𝑓 𝐔𝑚,𝑓
𝑟𝑎𝑛𝑘�+ … + 

1
10

 𝑅𝐶𝑅�𝑅 𝑤𝑖𝑡ℎ 𝑡𝑜𝑝 100% 𝑜𝑓 𝐔𝑚,𝑓
𝑟𝑎𝑛𝑘�            (2) 

 where FT is computed based on a set of users who have rated item m, 𝐔m. 𝐔𝑚,𝑓
𝑟𝑎𝑛𝑘 is a 

set of users in 𝐔m ranked according to the score of feature f. The lower FT of a feature is, 
the more robust the feature is. 

4.2 Results and Analyses 
Through experiments, we try to answer the following questions: 

 How much the effectiveness of features varies according to the change of the 
number of RAs, the rating frequency by RAs, the purpose of RAs, and the type of 
RAs? 

 In order to get trust reputation, how many users need to be involved in the process 
of computing the reputation? 
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 What are robust features? 
 How much are the combinations of multiple features beneficial to getting true 

reputation? 

The parameter values for RAs are set as follows: the number of RAs is set to be 10%, 
20%, and 30% of the total number of ratings on the item; the rating frequency by RAs is set 
to be 50, 100, and 150. Fig. 1 shows the effectiveness of some features (FMV, FMD, and PV 
selected as robust features via our experiments in Section 4) according to the number of RAs 
and the rating frequency under attacks by different types of push RA (i.e., Average RA, 
Random RA, Segment RA, and Selected Popular RA). The y-axis represents RCR measured 
by top 50% of 𝐔𝑚,𝑓

𝑟𝑎𝑛𝑘 , where the feature is FMV, FMD, or PV on an item. The x-axis 
represents combinations of the number of RAs (10%, 20%, 30%) and the rating frequency 
(50, 100, 150). According to these experimental results in Fig. 1, the effectiveness of each 
feature is shown similar in the case of the same type of RAs regardless of different parameter 
settings. For each RA, we thus show the average of RCRs obtained from nine experimental 
results performed by different parameter settings. 

 
(a) Average RAs 

 
(b) Random RAs 

 
(c) Segment RAs 

 
(d) Selected popular RAs 

Fig. 1. Reputation change by the number of RAs and the rating frequency 
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The figures in Fig. 2, Fig. 2-(a) to Fig. 2-(d), show the effectiveness of features under the 
attacks by different types of push RA, i.e., Average RA, Random RA, Segment RA, and 
Selected Popular RA, respectively. In the case of Degsim, we used k = 25 and in the case of 
𝐷𝑒𝑔𝑆𝑖𝑚′, we also used k = 25 and set d to be 10, 20, 30, 40, and 503. The figures show the 
top 5 features whose FTs are smaller than those of other features. The x-axis represents the 
ratio of users used to the total number of users on an item and the y-axis represents RCR. 

Fig. 2-(a) to Fig. 2-(d) show that overall FMV, FMD, and PV perform reasonably. The 
RCRs of the three features increase up to 70%, however, sharply deteriorate after that. In the 
cases of FMV, FMD, and PV, RCR gets higher when more than 70% users are used in 
computing reputation because RAs are involved in reputation computation. Overall, when 
online rating systems face attacks by push RAs, we can get the reputation close to true 
reputation by using the top 70% users ranked by FMV.  

 
(a) RCR by Average RAs 

 
(b) RCRs by Random RAs 

 
(c) RCR by Segment RAs 

 
(d) RCRs by Selected Popular RAs 

Fig. 2. Reputation change by push RAs 

3 Based on our preliminary experiments, we set 𝛼𝑑𝑒𝑔𝑠𝑖𝑚′  to be -5, -7.5, and -10 according to different values of 
d. We assign 𝜇𝑑𝑒𝑔𝑠𝑖𝑚′  with the average of all users’ 𝐷𝑒𝑔𝑆𝑖𝑚𝑢
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The figures in Fig. 3, Fig. 3-(a) to Fig. 3-(d), show the effectiveness of the top 5 features 
under attacks by different types of nuke RA, i.e., Average RA, Random RA, Love/ Hate RA, 
and Reverse Selected Popular RA, respectively. 

Fig. 3-(a) to Fig. 3-(d) show that, overall, the top 5 features work well. In the case of 
TMF, it shows a very low RCR even though a small number of users are used in computing 
the reputation. In the cases of FMV, FMD, and PV, RCR increases when more than 70% 
users are used in computing the reputation because RAs start to be involved in computation. 

 
(a) RCR by Average RAs 

 
(b) RCRs by Random RAs 

 
(c) RCR by Love/Hate RAs 

 
       (d) RCRs by Reverse Selected Popular 

RAs 
Fig. 3. Reputation change by nuke RAs 

By comparing FTs of all features, we examine which features are robust under attacks by 
push RAs and nuke RAs. Table 2 shows the changes of RCRs, under attacks by push RAs, 
according to the percent of selected users & the used feature and the ranks of features 
according to FT. We shade the cells whose values are smaller than 0.1627, which is RCR 
when the reputation is computed by using all the users. FMD, FMV, PV, Activity, and TMF 
perform reasonably in most cases and Degsim, 𝐷𝑒𝑔𝑆𝑖𝑚′, RDMA, and WDMA show poor 
RCRs in most cases. 
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Table 2. Effectiveness of all the features by push RAs 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% FT 

R
A

N
K

 

Activity 0.1038  0.0578  0.0517  0.0593  0.0772  0.0987  0.1241  0.1487  0.1646  0.1627  0.0268  4 

Objectivity 0.6954  0.6042  0.4847  0.3825  0.3121  0.2623  0.2262  0.2000  0.1834  0.1627  0.1455  11 

Consistency 0.6671  0.5637  0.4553  0.3692  0.3129  0.2721  0.2440  0.2049  0.1848  0.1627  0.1367  9 

WC 0.5425  0.4647  0.3786  0.3095  0.2663  0.2340  0.2800  0.1902  0.1783  0.1627  0.1135  7 

RDMA 0.8143  0.7303  0.5531  0.4172  0.3286  0.2718  0.2229  0.1911  0.1740  0.1627  0.1670  16 

WDMA 0.8153  0.7320  0.5538  0.4109  0.3285  0.2709  0.2293  0.1956  0.1776  0.1627  0.1673  17 

WDA 0.6809  0.6744  0.5597  0.4350  0.3464  0.2786  0.2336  0.1990  0.1739  0.1627  0.1523  13 

DegSim 
(k=25) 0.8112  0.7363  0.5609  0.3978  0.3099  0.2565  0.2229  0.1958  0.1773  0.1627  0.1663  15 

DegSim'  
(d=10, k=25) 0.8115  0.7450  0.5901  0.4383  0.3538  0.3026  0.2627  0.2207  0.1831  0.1627  0.1713  19 

DegSim'  
(d=20, k=25) 0.7941  0.7234  0.5773  0.4412  0.3652  0.3026  0.2567  0.2205  0.1865  0.1627  0.1683  18 

DegSim'  
(d=30, k=25) 0.7087  0.6486  0.5401  0.4421  0.3710  0.3106  0.2569  0.2237  0.1875  0.1627  0.1551  14 

DegSim'  
(d=40, k=25) 0.6441  0.6058  0.5418  0.4480  0.3674  0.3132  0.2593  0.2224  0.1878  0.1627  0.1467  12 

DegSim' 
(d=50, k=25) 0.5880  0.5584  0.5221  0.4384  0.3614  0.3088  0.2581  0.2170  0.1865  0.1627  0.1376  10 

LengthVar 0.1993  0.2882  0.3629  0.3733  0.3292  0.2808  0.2401  0.2075  0.1858  0.1627  0.0767  6 

TMF (push) 0.1087  0.1193  0.1179  0.1170  0.1327  0.1479  0.1680  0.1749  0.1671  0.1627  0.0369  5 

FMTD 
(push) 0.5551  0.5185  0.4354  0.3525  0.2839  0.2423  0.1964  0.1743  0.1721  0.1627  0.1230  8 

FMV (push) 0.1298  0.0729  0.0456  0.0340  0.0264  0.0203  0.0162  0.0366  0.0931  0.1627  0.0232  2 

FMD (push) 0.1158  0.0859  0.0482  0.0369  0.0267  0.0183  0.0148  0.0406  0.1015  0.1627  0.0227  1 

PV (push) 0.1216  0.0843  0.0761  0.0582  0.0480  0.0343  0.0244  0.0371  0.0926  0.1627  0.0254  3 

Table 3 shows the changes of RCRs, under attacks by nuke RAs, according to the percent 
of selected users & the used feature and the ranks of features according to FT. We shade the 
cells whose values are smaller than 0.1324, which is RCR when the reputation is computed 
by using all the users. TMF, PV, Activity, FMV, and FMD work well in most cases and 
Degsim, 𝐷𝑒𝑔𝑆𝑖𝑚′, RDMA, and WDMA show poor RCRs in most cases. 
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Table 3. Effectiveness of all the features by nuke RAs 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% FT 

R
A

N
K

 

Activity 0.0744  0.0437  0.0367  0.0380  0.0479  0.0664  0.0935  0.1160  0.1327  0.1324  0.0194  3 

Objectivity 0.5300  0.4499  0.3713  0.2933  0.2395  0.2052  0.1797  0.1546  0.1360  0.1324  0.1107  10 

Consistency 0.5795  0.4051  0.2944  0.2271  0.1821  0.1582  0.1388  0.1352  0.1286  0.1324  0.1050  9 

WC 0.4226  0.3109  0.2386  0.1979  0.1735  0.1543  0.1219  0.1338  0.1330  0.1324  0.0815  8 

RDMA 0.7158  0.6062  0.4436  0.3254  0.2546  0.2121  0.1785  0.1622  0.1431  0.1324  0.1409  16 

WDMA 0.7215  0.6064  0.4395  0.3245  0.2540  0.2080  0.1834  0.1664  0.1441  0.1324  0.1414  17 

WDA 0.5930  0.5587  0.4327  0.3295  0.2612  0.2157  0.1830  0.1609  0.1441  0.1324  0.1263  13 

DegSim 
(k=25) 0.7249  0.6110  0.4501  0.3399  0.2712  0.2240  0.1895  0.1645  0.1439  0.1324  0.1434  19 

DegSim'  
(d=10, k=25) 0.7213  0.6066  0.4453  0.3398  0.2802  0.2330  0.1980  0.1701  0.1529  0.1324  0.1433  18 

DegSim'  
(d=20, k=25) 0.6742  0.5908  0.4410  0.3293  0.2641  0.2261  0.1997  0.1735  0.1515  0.1324  0.1370  15 

DegSim'  
(d=30, k=25) 0.6407  0.5511  0.4276  0.3293  0.2617  0.2221  0.1964  0.1737  0.1536  0.1324  0.1311  14 

DegSim'  
(d=40, k=25) 0.5881  0.5249  0.4244  0.3309  0.2614  0.2170  0.1918  0.1729  0.1538  0.1324  0.1243  12 

DegSim' 
(d=50, k=25) 0.4914  0.4695  0.4068  0.3283  0.2585  0.2156  0.1903  0.1693  0.1544  0.1324  0.1110  11 

LengthVar 0.2008  0.2404  0.3091  0.3069  0.2595  0.2221  0.1898  0.1639  0.1446  0.1324  0.0667  7 

TMF (nuke) 0.0491  0.0332  0.0348  0.0415  0.0400  0.0376  0.0335  0.0360  0.0943  0.1324  0.0135  1 

FMTD 
(nuke) 0.0663  0.0699  0.0986  0.1063  0.1051  0.1067  0.1087  0.1120  0.1227  0.1324  0.0256  6 

FMV (nuke) 0.1141  0.0739  0.0384  0.0220  0.0183  0.0206  0.0223  0.0364  0.0762  0.1324  0.0206  4 

FMD (nuke) 0.1217  0.0712  0.0474  0.0332  0.0318  0.0278  0.0388  0.0865  0.1366  0.1324  0.0237  5 

PV (nuke) 0.0881  0.0652  0.0406  0.0255  0.0231  0.0216  0.0219  0.0360  0.0743  0.1324  0.0178  2 

 

We next examine whether the combination of robust features is more effective in getting 
true reputation. Fig. 4-(a) shows the top 5 features selected by comparing the effectiveness 
of FMD, FMV, and PV (the best three features under attacks by push RAs) and all the 
possible combinations of the three features (FMV&FMD, FMV&PV, FMD&PV, 
FMV&FMD&PV). Fig. 4-(a) shows the top 5 features selected by comparing the 
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effectiveness of TMF, PV, and Activity (the best three features under attacks by nuke RAs) 
and the combinations of the three features (TMF&PV, TMF&Activity, PV&Activity, and 
TMF&PV&Activity). Fig. 4 shows the effectiveness of the combinations of features slightly 
increases. However, it is difficult to say the combinations are really effective in getting true 
reputation. 

 
(a) RCR using feature combinations by push RAs 

 
(b) RCR using features combinations by nuke RAs 

Fig. 4. Reputation Change using feature combinations 

In all previous experiments, we use the average (i.e., to assign the same weight to each 
rating) when aggregating ratings of (high ranked) users with relatively high values of a 
feature. When RAs are selected as the high ranked users, using the average may result in a 
false reputation. Therefore, we perform a series of experiments not using the average but 
giving a different weights to ratings (assigning a more weight to users with high values of a 
feature) in computing reputation. All the parameters for RAs and features are set as the same 
as in previous experiments. We also show the average RCRs obtained from nine 
experimental results performed by different parameter settings. 

The figures in Fig. 5, Fig. 5-(a) to Fig. 5-(d), show the effectiveness of features when 
using the weighted sum method under the attacks by different types of push RA. Comparing 
them with the results by using the average, the biggest difference is the result of RCR when 
all the users are counted (i.e., the maximum value in the x-axis of Fig. 5). While using the 
average where all the ratings are equally considered to compute the reputation cannot 
distinguish normal users from RAs, using the weighted sum is likely to distinguish normal 
users from RAs, especially when using the features of FMV, FMD, and Activity. 
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Fig. 5-(a) to Fig. 5-(d) show that overall FMV, FMD, and PV perform well. Similar to 
the results obtained by using the average, the RCRs of the three features increase up to 70%. 
After that, the RCRs of FMV and FMD gradually deteriorate while that of PV abruptly 
deteriorates. In the case of FMV, even though more than 70% users are used in computing 
reputation (i.e., RAs are involved in reputation computation), RCR does not vary greatly 
with the ratio of used users. Overall, when online rating systems are attacked by push RAs, 
we can get the reputation close to true one by using the weighted sum with only a small 
number of users ranked by FMV. 

 

 
(a) RCR by Average RAs 

 
(b) RCRs by Random RAs 

 
(c) RCR by Segment RAs 

 
(d) RCRs by Selected Popular RAs 

Fig. 5. Reputation Change by push RAs (using the weighted sum) 

The figures in Fig. 6, Fig. 6-(a) to Fig. 6-(d), show the effectiveness of features when 
using the weighted sum under the attacks by different types of nuke RA. Using the weighted 
sum seems to distinguish normal users from RAs, especially when using the features of TMF.  

Fig. 6-(a) to Fig. 6-(d) show that overall, the top 5 features work reasonably. Similar to 
the results by using the average, the RCRs of FMV and PV increase up to 70%. However, 
after the point, the RCRs of FMV and PV gradually deteriorate. In the case of TMV, it shows 
a very low RCR even though a small number of users are used in computing reputation. Also, 
even though more than 70% users are used in computing reputation, the RCR is still 
reasonable. Overall, when online rating systems are attacked by nuke RAs, we can get the 
reputation close to true one by using the weighted sum with only a small number of users 
ranked by TMV. 
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(a) RCR by Average RAs 

 
(b) RCRs by Random RAs 

 
(c) RCR by Love/Hate RAs 

 
     (d) RCRs by Reverse Selected Popular RAs 

Fig. 6. Reputation change by nuke RAs (using the weighted sum) 

Table 4 shows the changes of RCRs when using the weighted sum, under attacks by push 
RAs, according to the percent of selected users & the used feature and the ranks of features 
according to FT. We shade the cells whose values are smaller than 0.1627, which is RCR by 
using the average when aggregating ratings of all users. Comparing them with RCRs in 
Table 2, the RCRs of Activity, TMF, FMV, FMD, and PV with 100% users show lower than 
0.1627, the average value.  

Table 4. Effectiveness of all the features by push RAs (using the weighted sum) 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% FT 

R
A

N
K

 

Activity 0.1038  0.0574  0.0491  0.0544  0.0693  0.0861  0.1057  0.1212  0.1320  0.1339  0.0249  3 

Objectivity 0.6983  0.6110  0.4990  0.4047  0.3397  0.2939  0.2610  0.2381  0.2236  0.2102  0.1501  10 

Consistency 0.6695  0.5711  0.4761  0.4047  0.3596  0.3284  0.3031  0.2860  0.2770  0.2739  0.1479  9 

WC 0.5433  0.4667  0.3842  0.3184  0.2779  0.2483  0.2241  0.2105  0.2027  0.1991  0.1182  7 

RDMA 0.8146  0.7362  0.5789  0.4637  0.3904  0.3453  0.3118  0.2941  0.2863  0.2844  0.1769  15 

WDMA 0.8153  0.7331  0.5586  0.4208  0.3429  0.2903  0.2556  0.2333  0.2246  0.2236  0.1703  14 
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WDA 0.6803  0.6759  0.5709  0.4648  0.4001  0.3606  0.3432  0.3364  0.3349  0.3348  0.1627  12 

DegSim 
(k=25) 0.8135  0.7518  0.6268  0.5154  0.4522  0.4118  0.3842  0.3625  0.3460  0.3321  0.1858  17 

DegSim'  
(d=10, k=25) 0.8142  0.7653  0.6639  0.5655  0.5017  0.4580  0.4213  0.3858  0.3554  0.3364  0.1918  19 

DegSim'  
(d=20, k=25) 0.7952  0.7414  0.6418  0.5501  0.4960  0.4519  0.4175  0.3900  0.3644  0.3465  0.1875  18 

DegSim'  
(d=30, k=25) 0.7088  0.6627  0.5978  0.5534  0.5164  0.4884  0.4642  0.4479  0.4318  0.4222  0.1775  16 

DegSim'  
(d=40, k=25) 0.6441  0.6132  0.5703  0.5215  0.4817  0.4554  0.4332  0.4184  0.4055  0.3978  0.1642  13 

DegSim' 
(d=50, k=25) 0.5880  0.5618  0.5426  0.5002  0.4684  0.4509  0.4384  0.4305  0.4251  0.4221  0.1550  11 

LengthVar 0.1982  0.2834  0.3529  0.3658  0.3325  0.2996  0.2781  0.2651  0.2603  0.2595  0.0793  6 

TMF (push) 0.1077  0.1160  0.1148  0.1095  0.1123  0.1110  0.1153  0.1172  0.1153  0.1151  0.0328  5 

FMTD (push) 0.5377  0.5122  0.4392  0.3659  0.3056  0.2689  0.2297  0.2070  0.1912  0.1792  0.1235  8 

FMV (push) 0.1322  0.0743  0.0492  0.0379  0.0304  0.0243  0.0191  0.0210  0.0347  0.0523  0.0220  1 

FMD (push) 0.1205  0.0868  0.0513  0.0398  0.0289  0.0202  0.0159  0.0305  0.0672  0.1027  0.0224  2 

PV (push) 0.1218  0.0843  0.0754  0.0575  0.0472  0.0337  0.0242  0.0365  0.0911  0.1604  0.0253  4 

 

Table 5 shows the changes of RCRs when using the weighted sum, under attacks by nuke 
RAs, according to the percent of selected users & the used feature and the ranks of features 
according to FT. We shade the cells whose values are smaller than 0.1324, which is RCR by 
using the average of ratings of all users. Comparing them with RCRs in Table 3, the RCRs 
of Activity, TMF, FMTD, FMV, FMD, and PV with 100% users are lower than 0.1324. In 
most cases, Activity, TMF, FMTD, FMV, FMD, and PV show reasonable RCRs while 
DegSim, 𝐷𝑒𝑔𝑆𝑖𝑚′, RDMA, and WDMA show poor RCRs. 

Table 5. Effectiveness of all the features by nuke RAs (using the weighted sum) 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% FT 

R
A

N
K

 

Activity 0.0745  0.0439  0.0362  0.0360  0.0442  0.0594  0.0821  0.0986  0.1094  0.1114  0.0184  3 

Objectivity 0.5318  0.4558  0.3816  0.3088  0.2584  0.2261  0.2022  0.1802  0.1642  0.1590  0.1139  10 

Consistency 0.5838  0.4196  0.3172  0.2560  0.2163  0.1954  0.1849  0.1777  0.1739  0.1738  0.1125  9 

WC 0.4236  0.3136  0.2428  0.2033  0.1798  0.1621  0.1479  0.1437  0.1432  0.1431  0.0844  8 
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RDMA 0.7160  0.6118  0.4638  0.3601  0.2989  0.2630  0.2375  0.2266  0.2193  0.2173  0.1478  15 

WDMA 0.7215  0.6074  0.4433  0.3320  0.2651  0.2226  0.2010  0.1890  0.1786  0.1771  0.1436  14 

WDA 0.5925  0.5607  0.4440  0.3555  0.3047  0.2776  0.2643  0.2592  0.2578  0.2578  0.1342  12 

DegSim 
(k=25) 0.7263  0.6327  0.5158  0.4366  0.3855  0.3501  0.3236  0.3032  0.2864  0.2744  0.1603  18 

DegSim'  
(d=10, k=25) 0.7241  0.6383  0.5282  0.4531  0.4030  0.3618  0.3292  0.3027  0.2846  0.2667  0.1617  19 

DegSim'  
(d=20, k=25) 0.6759  0.6170  0.5172  0.4392  0.3882  0.3557  0.3313  0.3085  0.2895  0.2744  0.1549  17 

DegSim'  
(d=30, k=25) 0.6413  0.5761  0.5050  0.4556  0.4167  0.3916  0.3748  0.3604  0.3487  0.3395  0.1531  16 

DegSim'  
(d=40, k=25) 0.5881  0.5390  0.4738  0.4243  0.3899  0.3657  0.3509  0.3395  0.3297  0.3221  0.1422  13 

DegSim' 
(d=50, k=25) 0.4914  0.4775  0.4443  0.4097  0.3851  0.3721  0.3631  0.3566  0.3523  0.3488  0.1290  11 

LengthVar 0.2003  0.2361  0.2993  0.3014  0.2641  0.2376  0.2204  0.2112  0.2069  0.2063  0.0687  7 

TMF (nuke) 0.0491  0.0332  0.0348  0.0413  0.0399  0.0373  0.0352  0.0351  0.0347  0.0347  0.0119  1 

FMTD 
(nuke) 0.0536  0.0501  0.0698  0.0795  0.0820  0.0850  0.0881  0.0907  0.0943  0.0960  0.0196  4 

FMV (nuke) 0.1204  0.0765  0.0426  0.0261  0.0217  0.0234  0.0237  0.0369  0.0717  0.1200  0.0216  5 

FMD (nuke) 0.1246  0.0720  0.0485  0.0343  0.0327  0.0285  0.0389  0.0836  0.1304  0.1284  0.0240  6 

PV (nuke) 0.0896  0.0682  0.0434  0.0289  0.0249  0.0225  0.0217  0.0319  0.0549  0.0814  0.0175  2 

 

We also examine whether the combination of robust features is more effective in getting 
true reputation when using the weighted sum. Fig. 7-(a) shows the top 5 features selected by 
comparing the effectiveness of FMD, FMV, and PV (the best three features under attacks by 
push RAs) and all the possible combinations of the three features (FMV&FMD, FMV&PV, 
FMD&PV, FMV&FMD&PV). Fig. 7-(b) shows the top 5 features selected by comparing the 
effectiveness of TMF, PV, and Activity (the best three features under attacks by nuke RAs) 
and the combinations of the three features (TMF&PV, TMF&Activity, PV&Activity, and 
TMF&PV&Activity). Fig. 7 shows the effectiveness of combinations of features. Even 
though all the users are involved in computing reputation, the combination of robust features 
show very low RCRs. This indicates that the weighted sum method using robust features and 
the combination of robust features can calculate reputation reducing the influence of unfair 
ratings of RAs without the risk of omitting ratings of normal users. 
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(a) RCR using feature combinations by push RAs 

 
(b) RCR using features combinations by nuke RAs 

Fig. 7. Reputation Change using feature combinations (using the weighted sum) 

5. Conclusions 
For trustable aggregation of online ratings, we have identified TUs by finding robust features, 
which are directly opposite to the features of RAs and activity, objectivity, and consistency. 
The features are normalized into the values expressing the trustworthiness of users. We have 
employed user features for including as few RAs and many TUs as possible in computing 
true reputation. We have verified the effectiveness of each feature through extensive 
experiments. The experimental results show that some features are very robust to RAs. 
Regardless of being attacked by push RAs or nuke RAs, features of Activity, TMF, FMV, 
FMD, and PV are very robust. These robust features help to get true reputation by using only 
a small number of trustable users rather than whole users. In particular, if we use the average 
(i.e., to assign the same weight to each rating) in aggregating ratings of users, by using the 
top 70% users ranked by FMV, we could obtain reputation close to ground truth. When we 
use more users, RAs are likely to be involved in the process of the reputation computation. 
On the other hands, if we use the weighted sum method in aggregating ratings of users, by 
using the top 20% to 100% users ranked by FMV&PV and FMD&FMV, we could obtain 
reputation close to ground truth. These results show that the weighted sum method can 
distinguish TUs from RAs by assigning the different weights to different ratings. 
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