• Title/Summary/Keyword: robust feature extraction

Search Result 220, Processing Time 0.025 seconds

Semi-fragile Watermarking Scheme for H.264/AVC Video Content Authentication Based on Manifold Feature

  • Ling, Chen;Ur-Rehman, Obaid;Zhang, Wenjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4568-4587
    • /
    • 2014
  • Authentication of videos and images based on the content is becoming an important problem in information security. Unfortunately, previous studies lack the consideration of Kerckhoffs's principle in order to achieve this (i.e., a cryptosystem should be secure even if everything about the system, except the key, is public knowledge). In this paper, a solution to the problem of finding a relationship between a frame's index and its content is proposed based on the creative utilization of a robust manifold feature. The proposed solution is based on a novel semi-fragile watermarking scheme for H.264/AVC video content authentication. At first, the input I-frame is partitioned for feature extraction and watermark embedding. This is followed by the temporal feature extraction using the Isometric Mapping algorithm. The frame index is included in the feature to produce the temporal watermark. In order to improve security, the spatial watermark will be encrypted together with the temporal watermark. Finally, the resultant watermark is embedded into the Discrete Cosine Transform coefficients in the diagonal positions. At the receiver side, after watermark extraction and decryption, temporal tampering is detected through a mismatch between the frame index extracted from the temporal watermark and the observed frame index. Next, the feature is regenerate through temporal feature regeneration, and compared with the extracted feature. It is judged through the comparison whether the extracted temporal watermark is similar to that of the original watermarked video. Additionally, for spatial authentication, the tampered areas are located via the comparison between extracted and regenerated spatial features. Experimental results show that the proposed method is sensitive to intentional malicious attacks and modifications, whereas it is robust to legitimate manipulations, such as certain level of lossy compression, channel noise, Gaussian filtering and brightness adjustment. Through a comparison between the extracted frame index and the current frame index, the temporal tempering is identified. With the proposed scheme, a solution to the Kerckhoffs's principle problem is specified.

A Study on Robust Pattern Classification of Lung Sounds for Diagnosis of Pulmonary Dysfunction in Noise Environment (폐질환 진단을 위한 잡음환경에 강건한 폐음 패턴 분류법에 관한 연구)

  • Yeo, Song-Phil;Jeon, Chang-Ik;Yoo, Se-Keun;Kim, Duk-Young;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • In this paper, a robust pattern classification of breath sounds for the diagnosis of pulmonary dysfunction in noise environment is proposed. The feature parameter extraction method by highpass lifter algorithm and PM(projection measure) algorithm are used. 17 different groups of breath sounds are experimentally classified and investigated. The classification has been performed by 6 different types of combinations with proposed methods to evaluate the performances, such as ARC with EDM and LCC with EDM, WLCC with EDM, ARC with PM, LCC with PM, WLCC with PM. Furthermore, all feature parameters are extracted to 80th orders by 5th orders step, and all experiments are evaluated in increasing noise environments by degrees SNR 24dB to 0dB. As a results, WLCC which is derived from highpass lifter algorithm, is selected for the feature parameter extraction method. Pm is more robust than EDM in noisy environments to test and compare experimental results. WLCC with PM method(WLCC/PM) has a better performance in an increasing noise environment for diagnosis of pulmonary dysfunction.

Object Recognition by Invariant Feature Extraction in FLIR (적외선 영상에서의 불변 특징 정보를 이용한 목표물 인식)

  • 권재환;이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.65-68
    • /
    • 2000
  • This paper describes an approach for extracting invariant features using a view-based representation and recognizing an object with a high speed search method in FLIR. In this paper, we use a reformulated eigenspace technique based on robust estimation for extracting features which are robust for outlier such as noise and clutter. After extracting feature, we recognize an object using a partial distance search method for calculating Euclidean distance. The experimental results show that the proposed method achieves the improvement of recognition rate compared with standard PCA.

  • PDF

Similarity based Rotation Invariant Image Retrieval (유사도를 이용한 회전 불변 영상검색)

  • 권동현;장정동;이태홍
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.581-584
    • /
    • 1999
  • In order to retrieve the rotated image within database by the content based image retrieval system, the algorithms with rotation robustness is usually applied in the procedure of the feature extraction. In that case, it requires much calculation time for feature extraction and much indexed data for feature indexing. Thus. in this paper. we propose the rotation robust algorithm using the block variance of the projected vector. The algorithm does not require additional calculation for feature extraction and is executed within query time by comparing the extracted data. Proposed method can be processed through database including various size of images with shape information and executed with fast response time in implementation.

  • PDF

Fingerprint-Based Personal Authentication Using Directional Filter Bank (방향성 필터 뱅크를 이용한 지문 기반 개인 인증)

  • 박철현;오상근;김범수;원종운;송영철;이재준;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.256-265
    • /
    • 2003
  • To improve reliability and practicality, a fingerprint-based biometric system needs to be robust to rotations of an input fingerprint and the processing speed should be fast. Accordingly, this paper presents a new filterbank-based fingerprint feature extraction and matching method that is robust to diverse rotations and reasonably fast. The proposed method fast extracts fingerprint features using a directional filter bank, which effectively decomposes an image into several subband outputs Since matching is also performed rapidly based on the Euclidean distance between the corresponding feature vectors, the overall processing speed is so fast. To make the system robust to rotations, the proposed method generates a set of feature vectors considering various rotations of an input fingerprint and then matches these feature vectors with the enrolled single template feature vector. Experimental results demonstrated the high speed of the proposed method in feature extraction and matching, along with a comparable verification accuracy to that of other leading techniques.

Robust surface segmentation and edge feature lines extraction from fractured fragments of relics

  • Xu, Jiangyong;Zhou, Mingquan;Wu, Zhongke;Shui, Wuyang;Ali, Sajid
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.79-87
    • /
    • 2015
  • Surface segmentation and edge feature lines extraction from fractured fragments of relics are essential steps for computer assisted restoration of fragmented relics. As these fragments were heavily eroded, it is a challenging work to segment surface and extract edge feature lines. This paper presents a novel method to segment surface and extract edge feature lines from triangular meshes of irregular fractured fragments. Firstly, a rough surface segmentation is accomplished by using a clustering algorithm based on the vertex normal vector. Secondly, in order to differentiate between original and fracture faces, a novel integral invariant is introduced to compute the surface roughness. Thirdly, an accurate surface segmentation is implemented by merging faces based on face normal vector and roughness. Finally, edge feature lines are extracted based on the surface segmentation. Some experiments are made and analyzed, and the results show that our method can achieve surface segmentation and edge extraction effectively.

A study on hand gesture recognition using 3D hand feature (3차원 손 특징을 이용한 손 동작 인식에 관한 연구)

  • Bae Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.674-679
    • /
    • 2006
  • In this paper a gesture recognition system using 3D feature data is described. The system relies on a novel 3D sensor that generates a dense range mage of the scene. The main novelty of the proposed system, with respect to other 3D gesture recognition techniques, is the capability for robust recognition of complex hand postures such as those encountered in sign language alphabets. This is achieved by explicitly employing 3D hand features. Moreover, the proposed approach does not rely on colour information, and guarantees robust segmentation of the hand under various illumination conditions, and content of the scene. Several novel 3D image analysis algorithms are presented covering the complete processing chain: 3D image acquisition, arm segmentation, hand -forearm segmentation, hand pose estimation, 3D feature extraction, and gesture classification. The proposed system is tested in an application scenario involving the recognition of sign-language postures.

Robust Features Extraction by Human-based Hybrid Silhouette (하이브리드 실루엣 기반 인간의 강인한 특징 점 추출)

  • Kim, Jong-Seon;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.433-438
    • /
    • 2009
  • In this paper, we propose the robust features extraction method of human by using the skeleton model and hybrid silhouette model. The proposed feature extraction method is divided by hands, shoulder line and elbow region extraction. We use the peer's color information to find the position of hands and propose the circle detection method to extract the shoulder line and elbow. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Infrared Visual Inertial Odometry via Gaussian Mixture Model Approximation of Thermal Image Histogram (열화상 이미지 히스토그램의 가우시안 혼합 모델 근사를 통한 열화상-관성 센서 오도메트리)

  • Jaeho Shin;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2023
  • We introduce a novel Visual Inertial Odometry (VIO) algorithm designed to improve the performance of thermal-inertial odometry. Thermal infrared image, though advantageous for feature extraction in low-light conditions, typically suffers from a high noise level and significant information loss during the 8-bit conversion. Our algorithm overcomes these limitations by approximating a 14-bit raw pixel histogram into a Gaussian mixture model. The conversion method effectively emphasizes image regions where texture for visual tracking is abundant while reduces unnecessary background information. We incorporate the robust learning-based feature extraction and matching methods, SuperPoint and SuperGlue, and zero velocity detection module to further reduce the uncertainty of visual odometry. Tested across various datasets, the proposed algorithm shows improved performance compared to other state-of-the-art VIO algorithms, paving the way for robust thermal-inertial odometry.

Robust Control of Robot Manipulators using Vision Systems

  • Lee, Young-Chan;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.162-170
    • /
    • 2003
  • In this paper, we propose a robust controller for trajectory control of n-link robot manipulators using feature based on visual feedback. In order to reduce tracking error of the robot manipulator due to parametric uncertainties, integral action is included in the dynamic control part of the inner control loop. The desired trajectory for tracking is generated from feature extraction by the camera mounted on the end effector. The stability of the robust state feedback control system is shown by the Lyapunov method. Simulation and experimental results on a 5-link robot manipulator with two degree of freedom show that the proposed method has good tracking performance.

  • PDF