• Title/Summary/Keyword: robust and neural control

Search Result 220, Processing Time 0.03 seconds

Nonlinear Feedforward Compensation of BLDDM Position Control using Neural Network (신경회로망을 이용한 직접구동용 브러쉬없는 전동기 위치 추종 제어 시스템의 비선형 전향 보상)

  • Kim, Kyeong-Hwa;Lee, Jung-Hoon;Ko, Jong-Sun;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.294-297
    • /
    • 1994
  • A robust position tracking controller of the BLDDM sensitive to the load torque disturbance and inertia variation is constructed It is consisted of the linear feedback controller and the nonlinear feedforward compensator using the neural network. With effietive feedforward compensation of neural network, the robust position control can be obtained, which is verified by computer simulations.

  • PDF

Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach (신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근)

  • Yoon, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1848-1849
    • /
    • 2006
  • The new robust controller design method is proposed for the flight control systems with model uncertainties. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the "explosion of complexity" problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

  • PDF

Robust Control of Variable Hydraulic System using Multiple Fuzzy Rules (다수의 퍼지규칙을 이용한 가변유압시스템의 강건제어)

  • 양경춘;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.134-134
    • /
    • 2000
  • A switching control using multiple gains in the fuzzy rule is newly proposed for an abruptly changing hydraulic servo system. The proposed scheme employs fuzzy PID control, where modified input parameters are used, and LVQNN(Learning Vector Quantization Neural Network) as a switching controller (supervisor). Simulation and experimental studies have been carried out to validate and illustrate the proposed controller.

  • PDF

Nonlinear Dynamic Manipulator Control Using DNP Controller (DNP 제어기에 의한 비선형 동적 매니퓰레이터 제어)

  • Cho, Hyeon-Seob;Kim, Hee-Sook;Ryu, In-Ho;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.764-767
    • /
    • 1999
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

  • PDF

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

Implementation of Self-Adaptative System using Algorithm of Neural Network Learning Gain (신경회로망 학습이득 알고리즘을 이용한 자율적응 시스템 구현)

  • Lee, Sung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1868-1870
    • /
    • 2006
  • Neural network is used in many fields of control systems, but input-output patterns of a control system are not easy to be obtained and by using as single feedback neural network controller. And also it is difficult to get a satisfied performance when the changes of rapid load and disturbance are applied. To resolve those problems, this paper proposes a new algorithm which is the neural network controller. The new algorithm uses the neural network instead of activation function to control object at the output node. Therefore, control object is composed of neural network controller unifying activation function, and it supplies the error back propagation path to calculate the error at the output node. As a result, the input-output pattern problem of the controller which is resigned by the simple structure of neural network is solved, and real-time learning can be possible in general back propagation algorithm. Application of the new algorithm of neural network controller gives excellent performance for initial and tracking response and it shows the robust performance for rapid load change and disturbance. The proposed control algorithm is implemented on a high speed DSP, TMS320C32, for the speed of 3-phase induction motor. Enhanced performance is shown in the test of the speed control.

  • PDF

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

Backstepping Control of Robot Manipulators Driven by Induction Motors Using Neural Networks

  • Kim, Jung-Wook;Kim, Dong-Hun;Kim, Hong-Pil;Yang, Hai-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.5-37
    • /
    • 2001
  • A robust control for robot manipulators actuated by induction motors using neural networks(NNs) is considered. The control is designed to compensate for nonlinear dynamics associated with the mechanical subsystem and the electrical subsystems only with the measurements of link position, link velocity and stator winding currents. Two-layer NNs are used to approximate unknown functions occurring from parameter variation during backstepping design process. Specially, through the use of nonlinear observers for rotor flux, observed backstepping controller is designed to achieve uniform ultimately bounded link position tracking of the given reference signal ...

  • PDF

Robust control of nonlinear system using multilayer neural network (다층 신경회로망을 이용한 비선형 시스템의 견실한 제어)

  • 성홍석;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.41-49
    • /
    • 1997
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with disturbance a using multilayer neural network. The multilayer neural network can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate an unknown nonlinear system by using of multilayer neural netowrk. WE include a disturbance among the modelling error, and the weight-update rule of multilayer neural network is derived to satisfy Laypunov stability. The whole control system constitutes controller using the feedback linearization method. The weight of neural network which is used to implement nonlinear function is updated by the derived update-rule. The proposed control algorithm is verified through computer simulation.

  • PDF

A Robust Learning Algorithm for System Identification (외란을 포함한 학습 데이터에 강인한 시스템 모델링)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.200-200
    • /
    • 2000
  • Highly nonlinear dynamical systems are easily identified using neural networks. When disturbances are included in the learning data set Int system modeling, modeling process will be poorly performed. Since the radial basis functions in the radial basis function network(RBFN) are centered at the points specified by the weights, RBF networks are robust for approximating the process including the narrow-band disturbances deviating significantly from the regular signals. To exclude(filter) these disturbances, a robust algorithm for system identification, based on the RBFN, is proposed. The performance of system identification excluding disturbances is investigated and compared with the one including disturbances.

  • PDF