• Title/Summary/Keyword: robust and neural control

Search Result 220, Processing Time 0.027 seconds

Particle Filter Based Robust Multi-Human 3D Pose Estimation for Vehicle Safety Control (차량 안전 제어를 위한 파티클 필터 기반의 강건한 다중 인체 3차원 자세 추정)

  • Park, Joonsang;Park, Hyungwook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2022
  • In autonomous driving cars, 3D pose estimation can be one of the effective methods to enhance safety control for OOP (Out of Position) passengers. There have been many studies on human pose estimation using a camera. Previous methods, however, have limitations in automotive applications. Due to unexplainable failures, CNN methods are unreliable, and other methods perform poorly. This paper proposes robust real-time multi-human 3D pose estimation architecture in vehicle using monocular RGB camera. Using particle filter, our approach integrates CNN 2D/3D pose measurements with available information in vehicle. Computer simulations were performed to confirm the accuracy and robustness of the proposed algorithm.

Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network (합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지)

  • Baek, Seung-dae;Woo, Joo-hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

Stochastic intelligent GA controller design for active TMD shear building

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Wang, Ruei-Yuan;Meng, Yahui;Fu, Qiuli;Chen, Timothy
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.51-57
    • /
    • 2022
  • The problem of optimal stochastic GA control of the system with uncertain parameters and unsure noise covariates is studied. First, without knowing the explicit form of the dynamic system, the open-loop determinism problem with path optimization is solved. Next, Gaussian linear quadratic controllers (LQG) are designed for linear systems that depend on the nominal path. A robust genetic neural network (NN) fuzzy controller is synthesized, which consists of a Kalman filter and an optimal controller to assure the asymptotic stability of the discrete control system. A simulation is performed to prove the suitability and performance of the recommended algorithm. The results indicated that the recommended method is a feasible method to improve the performance of active tuned mass damper (ATMD) shear buildings under random earthquake disturbances.

Efficiency Optimization Control of IPMSM using Neural Network (신경회로망을 이용한 IPMSM의 효율 최적화 제어)

  • Chol, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.40-49
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications and so of due to their excellent power to weight ratio. To obtain maximum efficiency in these applications, this paper proposes the neural network control method. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the error back propagation algorithm(EBPA) of neural network. The minimization of loss is possible to realize eHciency optimization control for the IPMSM drive. This paper proposes high performance and robust control through a real time calculation of parameter variation such as variation of back emf constant, armature resistance and d-axis inductance about the motor operation. Proposed algorithm is applied IPMSM drive system, prove validity through analysis operating characteristics con011ed by efficiency optimization control.

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

On-line Monitoring and Control of Substrate Concentrations in Biological Processes by Flow Injection Analysis Systems

  • Rhee, Jong-Il;Adnan Ritzka;Thomas Scheper
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.156-165
    • /
    • 2004
  • Concentrations of substrates, glucose, and ammionia in biological processes have been on-line monitored by using glucose-flow injection (FIA) and ammonia-FIA systems. Based on the on-line monitored data the concentrations of substrates have been controlled by an on-off controller, a PID controller, and a neural network (NN) based controller. A simulation program has been developed to test the control quality of each controller and to estimate the control parameters. The on-off controller often produced high oscillations at the set point due to its low robustness. The control quality of a PID controller could have been improved by a high analysis frequency and by a short residence time of sample in a FIA system. A NN-based controller with 3 layers has been developed, and a 3(input)-2(hidden)-1(output) network structure has been found to be optimal for the NN-based controller. The performance of the three controllers has been tested in a simulated process as well as in a cultivation process of Saccharomyces cerevisiae, and the performance has also been compared to simulation results. The NN-based controller with the 3-2-1 network structure was robust and stable against some disturbances, such as a sudden injection of distilled water into a biological process.

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

Real-Time License Plate Detection Based on Faster R-CNN (Faster R-CNN 기반의 실시간 번호판 검출)

  • Lee, Dongsuk;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.511-520
    • /
    • 2016
  • Automatic License Plate Detection (ALPD) is a key technology for a efficient traffic control. It is used to improve work efficiency in many applications such as toll payment systems and parking and traffic management. Until recently, the hand-crafted features made for image processing are used to detect license plates in most studies. It has the advantage in speed. but can degrade the detection rate with respect to various environmental changes. In this paper, we propose a way to utilize a Faster Region based Convolutional Neural Networks (Faster R-CNN) and a Conventional Convolutional Neural Networks (CNN), which improves the computational speed and is robust against changed environments. The module based on Faster R-CNN is used to detect license plate candidate regions from images and is followed by the module based on CNN to remove False Positives from the candidates. As a result, we achieved a detection rate of 99.94% from images captured under various environments. In addition, the average operating speed is 80ms/image. We implemented a fast and robust Real-Time License Plate Detection System.

Recent trends in advanced flight control

  • Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.1-24
    • /
    • 1996
  • The development of future aircraft that involves the expanded flight envelop will place increased performance requirements on the design of the flight control system. Maneuvering areas are expanding into flight envelopes characterized by significantly larger levels of modeling uncertainty than encountered in present flight control designs. Conventional flight control techniques that ignore the effects of large parameter variations, modeling uncertainties and nonlinearities, will likely produce designs with poor performance and robustness. Recent advances in modern control theories called advanced control theories, most notably the H$\_$.inf./ synthesis technique, adaptive control and neural network application, offer the promise of a design technique that can produce both high performance and robust controllers for next generation aircraft. This special lecture will survey the recent development in advanced flight control and review the possible application of advanced control theories.

  • PDF

A Multi-Scale Parallel Convolutional Neural Network Based Intelligent Human Identification Using Face Information

  • Li, Chen;Liang, Mengti;Song, Wei;Xiao, Ke
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1494-1507
    • /
    • 2018
  • Intelligent human identification using face information has been the research hotspot ranging from Internet of Things (IoT) application, intelligent self-service bank, intelligent surveillance to public safety and intelligent access control. Since 2D face images are usually captured from a long distance in an unconstrained environment, to fully exploit this advantage and make human recognition appropriate for wider intelligent applications with higher security and convenience, the key difficulties here include gray scale change caused by illumination variance, occlusion caused by glasses, hair or scarf, self-occlusion and deformation caused by pose or expression variation. To conquer these, many solutions have been proposed. However, most of them only improve recognition performance under one influence factor, which still cannot meet the real face recognition scenario. In this paper we propose a multi-scale parallel convolutional neural network architecture to extract deep robust facial features with high discriminative ability. Abundant experiments are conducted on CMU-PIE, extended FERET and AR database. And the experiment results show that the proposed algorithm exhibits excellent discriminative ability compared with other existing algorithms.