• Title/Summary/Keyword: robust and neural control

Search Result 220, Processing Time 0.03 seconds

Control of a cart system using genetic algorithm

  • Kim, Sung-Soo;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.385-389
    • /
    • 1994
  • So far many researches have studied to control a cart system with a pole on the top of itself (forwards we call it simply a cart system) which is movable only to the directions to which a cart moves, using neural networks and genetic algorithms. Especially which it wag solved by genetic algorithms, it was possible to control a cart system more robustly than ordinary methods using neural networks but it had problems too, i.e., the control time to be achieved was short and the processing time for it was long. However we could control a cart system using standard genetic algorithm longer than ordinary neural network methods (for example error backpropagation) and could see that robust control was possible. Computer simulation was performed through the personal computer and the results showed the possibility of real time control because the cpu time which was occupied by processes was relatively short.

  • PDF

Precision Speed Control of PMSM Using Neural Observer (Neural Observer를 이용한 PMSM의 정밀 속도 제어)

  • Ko Jong-Sun;Lee Yong-Jae;Lee Tae-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.53-56
    • /
    • 2002
  • This paper presents neural observer that used to deadbeat load torque observer. Most practical systems are nonlinear, and it is general practice to use linear models to simplify their analysis and design. However, the locally linearized model is invalid for a large signal change. The neural observer is suggested to increase the performance of the load torque observer and main controller The output error and estimeted state is trianed by neural network of neural observer. As a result, the state estimation error is minimised and deadbeat load torque observer make use of corrected esimation state. To reduce of the noise effect of deadbeat load torque observer, the post-filter which is implemented by MA process, is adopted. As a result, the proposed control system becomes a robust and precise system against the load torque. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Neural Network Parameter Estimation of IPMSM Drive using AFLC (AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.

Robust Control of Current Controlled PWM Rectifiers Using Type-2 Fuzzy Neural Networks for Unity Power Factor Operation

  • Acikgoz, Hakan;Coteli, Resul;Ustundag, Mehmet;Dandil, Besir
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.822-828
    • /
    • 2018
  • AC-DC conversion is a necessary for the systems that require DC source. This conversion has been done via rectifiers based on controlled or uncontrolled semiconductor switches. Advances in the power electronics and microprocessor technologies allowed the use of Pulse Width Modulation (PWM) rectifiers. In this paper, dq-axis current and DC link voltage of three-phase PWM rectifier are controlled by using type-2 fuzzy neural network (T2FNN) controller. For this aim, a simulation model is built by MATLAB/Simulink software. The model is tested under three different operating conditions. The parameters of T2FNN is updated online by using back-propagation algorithm. The results obtained from both T2FNN and Proportional + Integral + Derivate (PID) controller are given for three operating conditions. The results show that three-phase PWM rectifier using T2FNN provides a superior performance under all operating conditions when compared with PID controller.

Sliding Mode Control of 5-link Biped Robot Using Wavelet Neural Network

  • Kim, Chul-Ha;Yu, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2279-2284
    • /
    • 2005
  • Generally, biped walking is difficult to control because it is a nonlinear system with various uncertainties. In this paper, we design a robust control system based on sliding-mode control (SMC) of 5-link biped robot using the wavelet neural network(WNN), in order to improve the efficiency of position tracking performance of biped locomotion. In our control system, the WNN is utilized to estimate uncertain and nonlinear system parameters, where the weights of WNN are trained by adaptive laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified by computer simulations.

  • PDF

Robust Position Control of DC Motor Using Neural Network Sliding Mode Controller (신경망 슬라이딩 모드 제어기를 이용한 직류 전동기의 강인한 위치제어)

  • 전정채;최석호;박왈서
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.122-127
    • /
    • 1998
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. The sliding mode control has robustness, but the discontinuous control law in sliding mode control with robustness leads to undesirable chattering in practice. As a method solving this problem, in this paper, neural network sliding mod control method for motor control system is presented. The proposed controller effectively can eliminate load disturbance without chattering. The effectiveness of the control scheme is verified by simulation results.

  • PDF

Robust Adaptive Control for Efficiency Optimization of Induction Motors (유도전동기의 효율 최적화를 위한 강인 적응제어)

  • Hwang, Young-Ho;Park, Ki-Kwang;Kim, Hong-Pil;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

Variable structure control of robot manipulator using neural network (신경 회로망을 이용한 가변 구조 로보트 제어)

  • 이종수;최경삼;김성민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.7-12
    • /
    • 1990
  • In this paper, we propose a new manipulator control scheme based on the CMAG neural network. The proposed control consists of two components. The feedforward component is an output of trained CMAC neural network and the feedback component is a modified sliding mode control. The CMAC accepts the position, velocity and acceleration of manipulator as input and outputs two values for the controller : One is the nominal torque used for feedforward compensation(M1 network) and the other is the inertia matrix related information used for the feedback component(M2 network). Since the used control algorithm guarantees the robust trajectory tracking in spite of modeling errors, the CMAC mapping errors due to the memory limitation are little worth consideration.

  • PDF

Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots (이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어)

  • Yoo Sung-Jin;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.