• 제목/요약/키워드: robust actuator

검색결과 235건 처리시간 0.028초

EHA의 정밀 힘제어를 위한 펌프 속도 제어기의 강인 내부루프 보상 (Robust Internal-loop Compensation of Pump Velocity Controller for Precise Force Control of an Electro-hydrostatic Actuator)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.55-60
    • /
    • 2018
  • Force-controlled electro-hydrostatic actuators have to exhibit high backdrivability, to quickly compensate for force control errors caused by externally disturbed rod movement. To obtain high backdrivability, the servomotor for driving the hydraulic pump, should rotate exactly to such a revolution to compensate for force control errors, compressing or decompressing cylinder chambers. In this study, we proposed a modified velocity control structure, including a robust internal-loop compensator (RIC)-based velocity controller, for the servomotor to improve backdrivability of a force-controlled EHA. Performance improvement was confirmed experimentally, wherein sinusoidal velocity disturbance was applied to the force-controlled EHA, with constant reference input. Its dynamic force control errors reduced effectively, with the proposed control scheme, compared to test results with a conventional motordriver, for motor velocity control.

웨이블릿 네트워크를 이용한 압전 구동기의 견실제어 (Robust Control of Piezo Actuator using Wavelet Networks)

  • 양창관;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.723-725
    • /
    • 2004
  • An iterative robust control design for PZT using Gaussian wavelet networks is proposed. A Gaussian wavelet network with accurate approximation capability is employed to approximate the nonlinear hysteresis dynamics of PZT systems by using an iterative control algorithm. Depending on the finite number of wavelet basis functions which results in unavoidable approximation errors, a robust control law is provided to guarantee the stability of the closed-loop nano positioning system. Finally, the effectiveness of the robust control approach is illustrated through comparative simulations on a PZT.

  • PDF

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

비 선형 요소를 갖는 정전 마이크로 구동기의 외란 관측기에 기초한 디지털 추종 제어기 설계 (Design of Digital Tracking Controller based on Disturbance Observer for Micro Electrostatic Actuator with Nonlinearity)

  • 최현택;서일홍
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.773-780
    • /
    • 1999
  • A digital tracking controller is proposed for micro electrostatic actuator with input nonlinearity, where disturbance observer is utilized in cooperation with inverse function. Generally the disturbance observer is announced to be robust to modeling uncertainty, and external disturbance. But, when the nonlinearity exists in the systems, the disturbance observer may not directly be applied to that system, because the nonlinearity may destabilize the overall system. Therefore, first, we linearize the nonlinear input characteristics of micro electrostatic actuator by the use of inverse function. Secondly, we apply disturbance observer to approximately linearized system for eliminating the residuals of nonlinearity and the modeling uncertainty. Then, we get the good properties of the disturbance rejection as well as the robustness due to the own nature of disturbance observer. In this case, we propose a sufficient condition for the robust stability of overall systems. Furthermore, we discuss the problem that may be exposed when disturbance observer is applied to the internally stable system with saturation, and analyze two methods to overcome input saturation problem in the sense of internal stability. Simulations have been carried out to show the effectiveness of the proposed controller.

  • PDF

전기 기계 구동 시스템에 대한 H$\infty$ 최적 제어기 구성 (H$\infty$ Optimal Controller Synthesis for an electromechanical actuator system)

  • 김용규;유창근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1117-1120
    • /
    • 1999
  • In this paper, we design the H$\infty$ optimal controller satisfying robust stability and performance in spite of the plant uncertainty for an electro-mechanical actuator system and analyze the controller in frequency domain. H$\infty$ optimal controller K was designed using iteration algorithm suggested by DOYLE. Using the controller in an electro-mechanical actuator system, the joint with very small coupling rigidity coefficient was used to vary the control parameter. The plant unstructured uncertainty was assumed to be a multiplicative type.

  • PDF

크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크 (Robust Wireless Sensor and Actuator Network for Critical Control System)

  • 박판근
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1477-1483
    • /
    • 2020
  • 무선 링크의 불확실성과 임베디드 장치의 결함으로 인하여 무선 네트워크 기반 제어 시스템의 안정성을 보장하는 것은 여전한 도전과제이다. 본 논문에서는 시간, 채널 및 공간 자원의 다양성을 조합하여 계층적 클러스터 기반 고강건 무선 센서 액추에이터 네트워크(R-WSAN; Robust Wireless Sensor and Actuator Network )를 제시한다. R-WSAN은 무선 네트워크 자원 할당을 위한 스케줄링 알고리즘과 다중 플랜트의 제어 안정성을 보장하기 위한 제어 업무 공유 알고리즘을 포함한다. 또한, 제시된 프로토콜은 Zolertia RE-Mote 임베디드 하드웨어와 Contiki-NG를 기반으로 구현되고, 실험을 통하여 성능을 분석 하였다. 실험 결과를 통해 R-WSAN이 무선 링크 및 노드의 결함에도 고강건성을 보장하는 것을 보여 주었다. 또한, 제시된 스케줄링 알고리즘과 제어 공유 알고리즘을 통해, 제어 노드의 결함에도 제어 시스템의 안정성을 보장할 수 있음을 보여주었다.

레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발 (Laser Microfabrication of Micro Actuator)

  • 김광열;고상철;박현기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현 (A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator)

  • 구정회;송치영
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

엑츄에이터 흔들림 제어를 위한 트랙킹 Gain-Up 제어기 설계 (A Tracking Gain-Up Controller Design for Controlling the Shake of Actuator)

  • 진경복;이문노
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.988-993
    • /
    • 2009
  • In this paper, we deal with a tracking gain-up controller design problem to control effectively the shake of tracking actuator after a track seek. A minimum tracking gain-up open-loop gain can be calculated by estimating the shake of tracking actuator and a desired transient specification is considered to diminish effectively the shake of actuator. A tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem with a regional stability constraint. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and is evaluated through the experimental results.

PZT를 이용한 광 정보저장기기용 액추에이터의 트랙 추적제어 (Track-following Control of an Optical Pick-up Actuator Using PZT)

  • 정동하;박태욱;박노철;양현석;이우철
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.385-393
    • /
    • 2004
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(voice coil motor) for coarse motion, for an SFF ODD(small form factor optical disk drive), in order to achieve fast access speed and precise track-following control. Over the past few decades there have been a lot of researches related to the VCM and dual-stage actuator. In this paper, we focus our attention on the design and control of the PZT actuator. Due to the dual cantilever structure. the PZT actuator can generate precise translational tracking motion at its tip to which an optical pickup is attached. and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing it with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.