• 제목/요약/키워드: robust actuator

검색결과 235건 처리시간 0.027초

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Design and investigation of a shape memory alloy actuated gripper

  • Krishna Chaitanya, S.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.541-558
    • /
    • 2014
  • This paper proposes a new design of shape memory alloy (SMA) wire actuated gripper for open mode operation. SMA can generate smooth muscle movements during actuation which make them potentially good contenders in designing grippers. The principle of the shape memory alloy gripper is to convert the linear displacement of the SMA wire actuator into the angular displacement of the gripping jaw. Steady state analysis is performed to design the wire diameter of the bias spring for a known SMA wire. The gripper is designed to open about an angle of $22.5^{\circ}$ when actuated using pulsating electric current from a constant current source. The safe operating power range of the gripper is determined and verified theoretically. Experimental evaluation for the uncontrolled gripper showed a rotation of $19.97^{\circ}$. Forced cooling techniques were employed to speed up the cooling process. The gripper is simple and robust in design (single movable jaw), easy to fabricate, low cost, and exhibits wide handling capabilities like longer object handling time and handling wide sizes of objects with minimum utilization of power since power is required only to grasp and release operations.

스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구 (A study on robust multivariable control of stewart platform type motion simulator)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어 (A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme)

  • 이지민;박성환;박민규;김종식
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

강인제어 기법과 입력성형법을 이용한 자벌레의 정밀 위치 제어 (Precise Position Control of Inchworm Using Robust Control Technique and Input Shaping)

  • 양광용;황윤식;김영식;김인수
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.169-175
    • /
    • 2009
  • This paper presents motion control of the Inchworm composed of the piezoelectric actuators and mechanical elements. Piezoelectric actuator shows nonlinear response characteristics including hysteresis due to the ferroelectric characteristics. This paper proposes feedback control scheme to improve the ability of tracking response to complex input signal and suppress the phenomenon of hysteresis using the sliding mode control technique with the integrator. The sliding mode control system has the limit to minimize both the settle time and overshoot. For making up this limit, this paper also suggests input shaping technique suitable to the inchworm control system.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

뱅-뱅 액츄에이터를 가진 위치 제어계의 강인 제어 (Robust control of positioning systems with a bang-bang actuator)

  • 최진태;김종식
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.257-263
    • /
    • 1996
  • 본 논문에서는 기계적 위치 제어계에서 다단계 뱅-뱅 액츄에이터의 비선형성에 의한 목표 위치에서의 리미트 사이클을 방지하는 제어방법을 제안한다. 다단계 뱅-뱅 액츄에이터의 선형화된 모델인 기술함수를 이용하여 비선형성을 보상한다. 강인성을 확보하기 위해 루프 형성 기법에 의한 H/sub .inf./ 제어기가 설계된다. 제안된 제어방법은 기존의 선형제어기보다 비선형성이 보상되어 사역대가 작아지므로 최소 제어 가능 구간을 줄일 수 있다. 1축 위치 제어계의 실험을 하여 제안된 제어방법이 리미트 사이클을 줄이고 제어정도를 향상 시키는데 유효함을 입증하였다.

  • PDF

광학 디스크 드라이브를 위한 강인 제어 알고리즘의 구현 (Implementation of a robust control algorithm for Optical Disk Drive)

  • 정희수;최현택;배홍문;서일홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.652-654
    • /
    • 1999
  • This paper presents approaches to the control of the DVD(Digital Video Disk) system using DSP(Digital Signal Processor) in order to improve the precision and robustness. To improve the performance of the Pick-Up servo actuator of the digital video drive, the tracking and focusing servo control algorithms is applied to this system. Simulation results show the performance of the robust control algorithm applied the pick-up servo system comparing to the linear controller.

  • PDF

외란 관측기를 이용한 견실한 차량 안정성 제어 (Robust Vehicle Stability Control Using Disturbance Observer)

  • 한진오;이경수;강수준;이교일
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2519-2526
    • /
    • 2002
  • A disturbance observer-based vehicle stability controller is proposed in this paper. The lumped disturbance to the vehicle yaw rate dynamics caused by the uncertain factors such as uncertain tire forces and parameters is estimated by the disturbance observer, which is utilized by the robust controller to stabilize the lateral dynamics of the vehicle. The dynamics of the hydraulic actuator is incorporated in the vehicle stability controller design using the model reduction technique. Modular control design methodology is adopted to effectively deal with the mismatched uncertainty. Simulation results indicate that the proposed disturbance observer-based vehicle stability controller can achieve the desired reference tracking performance as well as sufficient level of robustness.

고속 광 픽업 장치의 강인 서보 제어 (Robust Servo Control of High Speed Optical Pickups)

  • 임승철;정태영
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.533-541
    • /
    • 1998
  • Recently, optical disk drives are increasingly demanded to have higher speed as well as high information density, especially for applications like CD ROM drives. To this end, improvement of their optical pickup structure and control is recognized the very challenging issue. In this paper, the pickup is first analytically modelled in a plane to describe its coupled auto-focusing and auto-tracking motions. Subsequently, the model is linearized and combined with actuator dynamics for the auto-focusing system. With its unmeasurable parameters being estimated based on experimental data, an approximate I-DOF linear model is obtained neglecting the coupling term. To design the high speed and robust positional servo controller realistic design specifications are addressed, and H control method is employed based on the approximate model. Finally, taking the pickup in a commerical high speed CD ROM drive as an example performance of the designed controller is verified through realtime experiments.

  • PDF