• Title/Summary/Keyword: robotics education

Search Result 190, Processing Time 0.029 seconds

Generation Gap of Expected Rights through Telepresence Robots (텔레프레즌스 로봇을 통한 권리행사의 세대간 수용성 격차)

  • Bae, Illhan;Han, Jeonghye
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.160-168
    • /
    • 2020
  • There exists a popular belief that the elderly are more conservative than the younger people in acceptability of new technology. This study explores whether the generation gap in technology acceptance exists in the case of using telepresence robots, which project the presence and mobility of remote operator, for the universal purpose of social participation rather than for specific applications. Two groups of senior citizens and undergraduate students in their twenties personally experienced the telepresence robots operation and conducted a survey on how they perceived the social participation of a remote operator mediated by telepresence robot and to what extent the remote operator deserve equal rights to be treated as if one really exists in the local environment. The results show that the elderly have higher expectation on the role and functions of telepresence robots, and more favorable in principle for a remote operator to exercise equal rights by operating telepresence robot. It suggests that the stereotypes, the elderly lag behind younger generation in accepting new technology, is unlikely to fit into the telepresence robot market, for the elderly have more favor and support using telepresence robots as an universal avatar for social participation.

A Study on Vehicle Ego-motion Estimation by Optimizing a Vehicle Platform (차량 플랫폼에 최적화한 자차량 에고 모션 추정에 관한 연구)

  • Song, Moon-Hyung;Shin, Dong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.818-826
    • /
    • 2015
  • This paper presents a novel methodology for estimating vehicle ego-motion, i.e. tri-axis linear velocities and angular velocities by using stereo vision sensor and 2G1Y sensor (longitudinal acceleration, lateral acceleration, and yaw rate). The estimated ego-motion information can be utilized to predict future ego-path and improve the accuracy of 3D coordinate of obstacle by compensating for disturbance from vehicle movement representatively for collision avoidance system. For the purpose of incorporating vehicle dynamic characteristics into ego-motion estimation, the state evolution model of Kalman filter has been augmented with lateral vehicle dynamics and the vanishing point estimation has been also taken into account because the optical flow radiates from a vanishing point which might be varied due to vehicle pitch motion. Experimental results based on real-world data have shown the effectiveness of the proposed methodology in view of accuracy.

The Effect of Asynchronous Haptic and Video Feedback on Teleoperation and a Comment for Improving the Performance (비 동기화된 촉각과 영상 시간지연이 원격조종로봇에 미치는 영향과 성능 향상을 위한 조언)

  • Kim, Hyuk;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • In this paper, we investigate the effect of asynchronous haptic and video feedback on the performance of teleoperation. To analyze the effect, a tele-manipulation experiment is specially designed, which operator moves square objects from one place to another place by using master/slave telerobotic system. Task completion time and total number of falling of the object are used for evaluating the performance. Subjective study was conducted with 10 subjects in 16 different combinations of video and haptic feedback while participants didn't have any prior information about the amount of each delay. Initially we assume that synchronized haptic and video feedback would give best performance. However as a result, we found that the accuracy was increased when haptic and video feedback was synchronized, and the completion time was decreased when one of the feedback (either haptic or video) was decreased. Another interesting fact that we found in this experiment is that it showed even better accuracy when haptic information arrives little bit earlier than video information, than the case when those are synchronized.

2D Pose Nodes Sampling Heuristic for Fast Loop Closing (빠른 루프 클로징을 위한 2D 포즈 노드 샘플링 휴리스틱)

  • Lee, Jae-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1021-1026
    • /
    • 2016
  • The graph-based SLAM (Simultaneous Localization and Mapping) approach has been gaining much attention in SLAM research recently thanks to its ability to provide better maps and full trajectory estimations when compared to the filtering-based SLAM approach. Even though graph-based SLAM requires batch processing causing it to be computationally heavy, recent advancements in optimization and computing power enable it to run fast enough to be used in real-time. However, data association problems still require large amount of computation when building a pose graph. For example, to find loop closures it is necessary to consider the whole history of the robot trajectory and sensor data within the confident range. As a pose graph grows, the number of candidates to be searched also grows. It makes searching the loop closures a bottleneck when solving the SLAM problem. Our approach to alleviate this bottleneck is to sample a limited number of pose nodes in which loop closures are searched. We propose a heuristic for sampling pose nodes that are most advantageous to closing loops by providing a way of ranking pose nodes in order of usefulness for closing loops.

Environmental Education Contents Embedded in Exhibits of Natural History Museums (자연사박물관의 전시에 반영된 환경교육 내용 요소 분석)

  • Jung, Won-Young;Park, Eun-Ji;Lee, Joo-Youn;Kim, Chan-Jong;Park, Ji-Eun
    • Hwankyungkyoyuk
    • /
    • v.22 no.2
    • /
    • pp.92-106
    • /
    • 2009
  • We assumed that natural history museums have rooms for functioning as institutions for the environmental education, especially in aspects of multi-disciplinary, informal education. So we set goals of this research as finding 1) how much environmental education contents are reflected in exhibits of natural history museums, and 2) what those characteristics in aspects of dimension, range, and topic are. First, we developed a framework for analyzing of environmental education contents. Second, we applied the framework to seven major natural history museums. As the result, environmental education contents are reflected by 69.1% totally. Especially, the 'knowledge' dimension covered mostly, and among them the range of 'elements of Ecosystem' occupied more than other ranges. With inferring our results, we suggested that characteristics of natural history museums in environmental education are followed; spatial-temporal expansion of bio-diversity concept, visualizing impacts of human activity against nature.

  • PDF

Interactive Technology Education at Pusan National University

  • Park, Sang-Joo;Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1195-1200
    • /
    • 2004
  • We introduce an introductory engineering education course for engineering majors and non-engineering majors. This course does not require any previous knowledge and experience on engineering. It requires strong curiosities and imaginations on current and future society we live in, where technology is inseparable ingredient. Course encourages attendees to explore fundamental issues of engineering: what is proper technology and what are proper ways of exercising engineering, issues dealt in soft engineering. Since course topics cover many aspects of technology, traditional learning methods fail to be successful and efficient. Various efficient learning methods have been proposed and implemented. We utilize various interactive tangible media, which include simulated thought experiments and physical media experiences. About 20 episodes in short film format are produced based on scenario written according to related issues selected. Physical media like interactive robots are introduced for attendees' stimulated experiences. We summarize our exciting experiments on interactive teaching experiences at Pusan National University which include on/off-line interactions, assignments, projects, and evaluations.

  • PDF

Remote Experiments for Control Education

  • Kwon, Bo-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2192-2197
    • /
    • 2003
  • This paper suggests remote experiments using the internet for the control education. The remote experiment is composed of equipment server computers, networks accessible to internet, and real plants such as inverted pendulums, crane systems and microcontrollers. Additionally, it requires a server program that has I/O functions with plants and calculate the control, an interface program bridging between web and the server program, and the home page including the detail explanation for the usage. For effective educations, how to perform experiments and how to combine the experiment with lectures will be discussed. The simple experiments by entering a few control parameters and the complex experiments by designing overall controls, will be explained. Technologies related with the remote experiment and other possible remote experiment will be introduced. It is demonstrated that the remote experiment will be very useful, particular for control education where students have difficulties in performing the experiments for lack of experimental equipments.

  • PDF

System Development for Education and Design of a Nonlinear Controller with On-Line Algorithm

  • Park, Seong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • The education system in this paper is used to demonstrate and educate the effects of electromagnetic induction. Placing an aluminum ring over the core and switching on AC source causes the ring to jump in the air due to induced currents in the ring producing a magnetic field opposed to that produced in the core. To control the position of the ring by only the current, it is to require nonlinear control algorithm and control board that is composed of photo sensors, decode circuit, computer communication, and power electronics circuit. This paper provides the development for education system in detail and the effects of dynamic neural networks for nonlinear control with on line is studied.

Development of Software Education Products Based on Physical Computing (피지컬 컴퓨팅 기반 소프트웨어 교육용 제품 개발)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.595-600
    • /
    • 2019
  • Educational tools for infants and younger students are becoming smarter as ICT-based digital technology convergence extends according to the development of technology. As the digital interaction function of smart education tools gives students greater immersion and fun, a learning might become a play to the students. The technologies used in the implementation of smart education tools come from the disciplines of robotics, computer engineering, programming, and engineering and mathematical foundations and these can be integrated into the field of education itself. This paper designs and implements a product based on optimized physical computing for R&D and education in consideration of the characteristics of educational tool robots used in the field education. It was developed to enable physical education for sensing information processing, software design and programming practice training that is the basis of robot system.

Educators' Perception on the Use of Robots in the Early Childhood Environment

  • Choi, Wonkyung;Stantic, Bela;Jo, Jun
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.138-144
    • /
    • 2019
  • Understanding teachers in the early childhood education is crucial as it can not only affect the quality of children's education but also cause many critical problems such as child abuse. A significant amount of research work has been made on the use of robots in childcare classrooms. The finding from the research has shown many advantages such as the improvement of learning performance, social/emotional skills, creativity, concentration period, physical and cognitive development. However, most of the study has been implemented at the K-12 classrooms but not much has been focused on the education at the early childhood classrooms. Importantly, it is very crucial to understand teachers' perception, demands and technical competence about the new teaching tool, in order to maximize its educational effect. This paper investigates some critical issues existing in both teaching and managing in the early childhood education. It will also explore teachers' perceptions and expectations on the use of robots to identify some dilemmas that exist in their working and teaching environment. A survey study was conducted with 119 early childhood educators in South Korea. It analyzed the educators' perception of using robots to improve their teaching performance and to make better outcomes for children, investigated job satisfaction and difficulties that they have in the current work environment. This paper concludes with several guidelines for integrating and setting robotics in the early childhood environment, in order to engender productive outcomes for the future early childhood education.