• Title/Summary/Keyword: robotic systems

Search Result 560, Processing Time 0.037 seconds

Task-oriented optimal grasp configurations for multifingered robotic hands (다지 로봇손의 작업에 따라는 최적 파지 형상)

  • 정낙영;최동훈;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.57-61
    • /
    • 1990
  • An optimal graspiftg algorithms for a multifingered robotic hand is proposed, where a new quality measure is developed to evaluate task-oriented as well as stability by modelling the tasks as ellipsoids. To show the validities of the proposed algorithm, several numerical examples are presented by employing a 3-fingered robotic hand.

  • PDF

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Automatic Performance Tuning of PID Trajectory Tracking Controller for Robotic Systems (로봇 시스템에 대한 PID 궤적추종 제어기의 자동 성능동조)

  • 최영진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.510-518
    • /
    • 2004
  • The PID trajectory tracking controller for robotic systems shows performance limitation imposed by inverse dynamics according to desired trajectory. Since the equilibrium point can not be defined for the control system involving performance limitation, we define newly the quasi-equilibrium region as an alternative for equilibrium point. This analysis result of performance limitation can guide us the auto-tuning method for PID controller. Also, the quasi-equilibrium region is used as the target performance of auto-tuning PID trajectory tracking controller. The auto-tuning law is derived from the direct adaptive control scheme, based on the extended disturbance input-to-state stability and the characteristics of performance limitation. Finally, experimental results show that the target performance can be achieved by the proposed automatic tuning method.

Experimental Setup for Autonomous Navigation of Robotic Vehicle for University Campus (대학 캠퍼스용 로봇차량의 자율주행을 위한 실험환경 구축)

  • Cho, Sung Taek;Park, Young Jun;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • This paper presents the experimental setup for autonomous navigation of a robotic vehicle for touring university campus. The robotic vehicle is developed for navigation of specific areas such as university campus or play parks. The robotic vehicle can carry two passengers to travel short distances. For the robotic vehicle to navigate autonomously the specific distance from the main gate to the administrative building in the university, the experimental setup for SLAM is presented. As an initial step, a simple method of following the line detected by a single camera is implemented for the partial area. The central line on the pavement colored with two kinds, red and yellow, is detected by image processing, and the robotic vehicle is commanded to follow the line. Experimental studies are conducted to demonstrate the performance of navigation as a possible touring vehicle.

Development of Muscle-Strength-Assistant Device and Military Suitability for High-Weight Carrying (고중량물 운반을 위한 근력보조장치 개발 및 군 적합성 연구)

  • Kim, Hyeong-Rae;Park, Jang-Sik;Lee, Kyeong-Ha;Ryu, Jae-Kwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.191-197
    • /
    • 2022
  • In this research, we developed the muscle-strength-assistant device, named as LEXO-W, and conducted suitability test for army when transporting high weights. LEXO-W relieves the burden when carrying heavy weights by distributing the load concentrated on the arms throughout the body. LEXO-W weighs 4 kg and is designed to handle objects weighing up to 55 kg. To verify the effectiveness of the device, object handling tests (high explosive shell, simple assembly bridges, and ammunition boxes) were conducted. Working time, metabolic rate, and electromyogram (EMG) signals were measured in each test. As a result, it was confirmed that the working time, metabolic rate and EMG signal before and after wearing LEXO-W were decreased. This research has great significance in that it verified the performance of the wearable device from the perspective of military operation.

The Hidden Object Searching Method for Distributed Autonomous Robotic Systems

  • Yoon, Han-Ul;Lee, Dong-Hoon;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1044-1047
    • /
    • 2005
  • In this paper, we present the strategy of object search for distributed autonomous robotic systems (DARS). The DARS are the systems that consist of multiple autonomous robotic agents to whom required functions are distributed. For instance, the agents should recognize their surrounding at where they are located and generate some rules to act upon by themselves. In this paper, we introduce the strategy for multiple DARS robots to search a hidden object at the unknown area. First, we present an area-based action making process to determine the direction change of the robots during their maneuvers. Second, we also present Q learning adaptation to enhance the area-based action making process. Third, we introduce the coordinate system to represent a robot's current location. In the end of this paper, we show experimental results using hexagon-based Q learning to find the hidden object.

  • PDF

A Fuzzy Adaptive Sliding Mode Controller for Tracking Control of Robotic Manipulators (로봇 매니퓰레이터의 추적 제어를 위한 퍼지 적응 슬라이딩 모드 제어기)

  • Le, Tien Dung;Kang, Hee-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.555-561
    • /
    • 2012
  • This paper describes the design of a fuzzy adaptive sliding mode controller for tracking control of robotic manipulators. The proposed controller incorporates a modified traditional sliding mode controller to drive the system state to a sliding surface and then keep the system state on this surface, and a fuzzy logic controller to accelerate the reaching phase. The stability of the control system is ensured by using Lyapunov theory. To verify the effectiveness of the proposed controller, computer simulation is conducted for a five-bar planar robotic manipulator. The simulation results show that the proposed controller can improve the reaching time and eliminate chattering of the control system at the same time.

A Wearable Interface for Tendon-driven Robotic Hand Prosthesis (건구동식 로봇 의수용 착용형 인터페이스)

  • Jung, Sung-Yoon;Park, Chan-Young;Bae, Ju-Hawn;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This paper proposes a wearable interface for a tendon-driven robotic hand prosthesis. The proposed interface is composed of a dataglove to measure finger and wrist joint angle, and a micro-control board with a wireless RF module. The interface is used for posture control of the robotic hand prosthesis. The measured joint angles by the dataglove are transferred to the main controller via the wireless module. The controller works for directly controlling the joint angle of the hand or for recognizing hand postures using a pattern recognition method such as LDA and k-NN. The recognized hand postures in this study are the paper, the rock, the scissors, the precision grasp, and the tip grasp. In experiments, we show the performances of the wearable interface including the pattern recognition method.

Robotic Automation Technologies in Construction : A Review

  • Chu, Baek-Suk;Kim, Dong-Nam;Hong, Dae-Hie
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2008
  • Robot technology is a remarkably interdisciplinary research area, one that can be employed in various industrial fields as well as higher value-added fields. The construction industry, on the other hand, has been known as one of the most difficult research fields to apply robotic schemes. Therefore, applying robot technologies in the construction industry is quite a challenging topic. This paper aims to introduce the progress of automated robotic systems in construction fields, namely with respect to construction robots. While construction robots have a very wide range of application depending on the huge market size of the construction industry, there still exist a lot of problems such as highly risky working environment and inefficiency due to the labor intensive characteristic. In order to solve these problems, a variety of construction robots have been developed and, in this paper, the current state of the robotic systems for construction works and the vision of future robot technology in the construction field are introduced.

Radial Type Locomotive Mechanism with Worm for Robotic Endoscope (내시경 로봇을 위한 웜구동 방사형 이동메커니즘)

  • Kim, Kyoung-Dae;Lee, Seunghak;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.220-225
    • /
    • 2002
  • In this paper, we suggest a new locomotive mechanism fur self-propelling robotic endoscope which could substitute conventional endoscope. Many researchers proposed inchworm-like mechanism for self-propelling robotic endoscope. But it could not be commercialized because they did not solve the limitation caused by clamping. Therefore, we suggest a new radial-type locomotive mechanism with worm. It can propel itself in any situation and take passive-steering because of radial type. In addition, it can be miniaturized with worm. In this paper, we evaluate the mechanism in the dead pig colon as well as under various environments, and verify the performance fur robotic endoscope.