• Title/Summary/Keyword: robotic arc welding

Search Result 45, Processing Time 0.031 seconds

Development of Mathematical Models for Control of Process Parameters for Robotic $CO_2$ Arc Welding (로봇 $CO_2$ 아크용접 공정변수를 제어하기 위한 수학적 모델 개발)

  • 임동엽;박창언;김일수;정영재;손준식;이계정
    • Proceedings of the KWS Conference
    • /
    • 1997.10a
    • /
    • pp.229-233
    • /
    • 1997
  • The demand to increase productivity and quality, the shortage of skilled labour and the strict health and safety requirements have led to the development of the automated welding process to deal with many of the present problems of welded fabrication. To make effective use of the automated arc welding process, it is imperative that a mathematical model, which can be programmed easily and fed to the robot, should be developed. The objectives of the paper are to develop the mathematical equations (linear and curvilinear) for study of the relationship between process variables and bead geometry by employing a standard statistical package program, SAS and to choose the best model for automation of the $CO_2$ gas arc welding process. Mathematical models developed from experimental results can be employed to control the process variables in order to achieve the desired bead geometry based on weld quality criteria. Also these equations may prove useful and applicable for automatic control system and expert systems.

  • PDF

A Study on Prediction for Top Bead Width using Radial Basis Function Network (방사형기저함수망을 이용한 표면 비드폭 예측에 관한 연구)

  • 손준식;김인주;김일수;김학형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.170-174
    • /
    • 2004
  • Despite the widespread use in the various manufacturing industries, the full automation of the robotic CO$_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an Radial basis function network model to predict the weld top-bead width as a function of key process parameters in the robotic CO$_2$ welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to verify performance. of the developed model.

  • PDF

A New Algorithm for Predicting Process Variables on Welding Bead Geometry for Robotic Arc welding (로봇 아아크 용접에서 비드 형상에 공정변수들을 예측하기 위한 새로운 알고리즘)

  • 김일수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.36-41
    • /
    • 1997
  • With the trend towards welding automation and robozation, mathematical models for studying the influence of various parameters on the weld bead geometry in Gas Metal Arc(GMA) welding process are required. The results of bead on plate welds deposited using the GMA welding process has enabled mathematical relationships to be developed that model the weld bead geometry. Experimental results were compared to outputs obtained using existing formulae that correlate process input variables to output parameters and subsequent modelling was performed in order to better predict the output of the GMA welding process. The aim of this work was to explain the relationships between GMA welding variables and weld bead geometry and thus, be able to predict input weld bead size. The relationships can be usefully employed for open loop process control and also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

The Multipass Joint Tracking System by Vision Sensor (비전센서를 이용한 다층 용접선 추적 시스템)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.14-23
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding system is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. However, in this paper, multipass tracking more than single pass tracking is performed by conventional seam tracking algorithm and developed one. And tracking performances of two algorithm are compared in multipass tracking. As the result, tracking performance in multi-pass welding shows superior conventional seam tracking algorithm to developed one.

A Study on Seam Tracking for Robotic Arc Welding Using Snapshot Visual Data (비젼 데이타를 이용한 아크 용접로보트의 용접선 추적에 관한 연구)

  • Kim, Eun-Yeob;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.83-97
    • /
    • 1992
  • A new approach, to seam tracking for robotic are welding is proposed. In this approach, the weld model is a snapshot image and the acquired image is analyzed and compared to the welding database which contains CAD data, weld positions, weld parameters, etc. This paper presents a fast and robust algorithm for the Hough Transform. This modified Hough Transform(MHT) algorithm uses the least-squares regression analysis method in order to approximate the edge lines more precisely, and leads to a significant reduction in both computation and storage. In comparison with the conventional seam tracking methods, this new approach has the advantages of low cost, continuous welding, and various type welding.

  • PDF

A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance (마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구)

  • Kim, Ill Soo;Lee, Jong Pyo;Lee, Ji Hye;Jung, Sung Myoung;Kim, Young Su;Chand, Reenal Ritesh;Park, Min Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.

The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes (GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

An Experimental Study on Prediction of Bead Geometry for GTA Multi-pass Welding in Underhead Position (GTA 아래보기 자세 다층용접부의 비드형상 예측에 관한 실험적 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Ji-Hye;Lee, Jong-Pyo;Kim, Young-Su;Na, Sang-Oh
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • The automatic arc welding is generally accepted as the preferred joining technique and commonly chosen for assembly of large metal structures such as in areas of automotive, aircraft and shipbuilding due to its joint strength, reliability, and low cost compared to other joint processes. Recently, several mathematical models have been developed and studied for control and monitoring welding quality, productivity, microstructure and weld properties in arc welding processes. This study indicates the prediction of process parameters for the expected welding quality with accordance to the adaptive GTA welding process. Furthermore, the mathematical models is also develop to aid the selection of an optimal welding process as the generation of process controls to predict the bead geometry as a function output parameters in the GTA welding process. The developed models through this study showed comparatively excellent predicted results, and will extend to other welding processes to integrate an optimized system for the robotic welding process.

Prediction of the Bead Width Using an Artificial Neural Network (신경회로망을 이용한 비드폭 예측)

  • 김일수;손준식;박창언;하용훈;성백섭
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.48-54
    • /
    • 2000
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor information about weld characteristics and process parameters as well; as t modify those parameters to hold weld. The objectives of this paper are to realize the mapping characteristics of bead width through the neural network and multiple regression method as well as to select the most accurate model in order to control the weld quality(bead width0. The experimental results show that the proposed neural network estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.

  • PDF

THE USE OF NEURAL NETWORK TECHNOLOGIES TO DETERMINE WELDING

  • Kim, Ill-Soo;Jeong, Young-Jae;Park, Chang-Eun;Sung, Back-Sub;Kim, In-Ju;Son, Jon-Sik;Yarlagadda, Prasad K.D.V.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • This paper presents the use of the neural network technology to establish a mathematical model for predicting bead geometry (top-bead width, top-bead height, back-bead width and back-bead height) for multi-pass welding, and understand relationships between process parameters and bead geometry for robotic GMA welding process. Using a series of robotic arc welding, additional multi-pass butt welds were carried out in order to verify the performance of the developed neural network model. The results show that not only the proposed model can predict the bead geometry with reasonable accuracy and guarantee the uniform weld quality, but also the neural network model could be better than the linear and curvilin ear equations developed from Lee [8].

  • PDF