• Title/Summary/Keyword: robot trajectory optimization

Search Result 68, Processing Time 0.022 seconds

LASER WELDING APPLICATION IN CAR BODY MANUFACTURING

  • Shin, Hyun-Oh;Chang, In-Sung;Jung, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.181-186
    • /
    • 2002
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows: optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4kW Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. Laser welding has found a place on Hyundai's production plant in conjunction with the startup of mass production of new sports car, and this production system is the result of a collaboration of its engineers. Outer side sheets are joined to inner side sheets by 122 stitch welds totally. And the length is about 2.4meter.

  • PDF

2D Pose Nodes Sampling Heuristic for Fast Loop Closing (빠른 루프 클로징을 위한 2D 포즈 노드 샘플링 휴리스틱)

  • Lee, Jae-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1021-1026
    • /
    • 2016
  • The graph-based SLAM (Simultaneous Localization and Mapping) approach has been gaining much attention in SLAM research recently thanks to its ability to provide better maps and full trajectory estimations when compared to the filtering-based SLAM approach. Even though graph-based SLAM requires batch processing causing it to be computationally heavy, recent advancements in optimization and computing power enable it to run fast enough to be used in real-time. However, data association problems still require large amount of computation when building a pose graph. For example, to find loop closures it is necessary to consider the whole history of the robot trajectory and sensor data within the confident range. As a pose graph grows, the number of candidates to be searched also grows. It makes searching the loop closures a bottleneck when solving the SLAM problem. Our approach to alleviate this bottleneck is to sample a limited number of pose nodes in which loop closures are searched. We propose a heuristic for sampling pose nodes that are most advantageous to closing loops by providing a way of ranking pose nodes in order of usefulness for closing loops.

Research on the cable-driven endoscopic manipulator for fusion reactors

  • Guodong Qin;Yong Cheng;Aihong Ji;Hongtao Pan;Yang Yang;Zhixin Yao;Yuntao Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.498-505
    • /
    • 2024
  • In this paper, a cable-driven endoscopic manipulator (CEM) is designed for the Chinese latest compact fusion reactor. The whole CEM arm is more than 3000 mm long and includes end vision tools, an endoscopic manipulator/control system, a feeding system, a drag chain system, support systems, a neutron shield door, etc. It can cover a range of ±45° of the vacuum chamber by working in a wrap-around mode, etc., to meet the need for observation at any position and angle. By placing all drive motors in the end drive box via a cable drive, cooling, and radiation protection of the entire robot can be facilitated. To address the CEM motion control problem, a discrete trajectory tracking method is proposed. By restricting each joint of the CEM to the target curve through segmental fitting, the trajectory tracking control is completed. To avoid the joint rotation angle overrun, a joint limit rotation angle optimization method is proposed based on the equivalent rod length principle. Finally, the CEM simulation system is established. The rationality of the structure design and the effectiveness of the motion control algorithm are verified by the simulation.

Trajectory Optimization Method for Portrait Drawing Robot (초상화를 그리는 로봇을 위한 드로잉 경로 최적화 방법)

  • Lee, Geun-Joo;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1165-1168
    • /
    • 2011
  • 본 연구는 휴머노이드 로봇 중에서 사람과 같은 방법으로 초상화를 그리는 로봇 암의 이동 궤적 최적화에 대해 기술한다. 이전에도 이러한 사람의 얼굴을 초상화로 그리는 로봇이 존재하였지만 대부분 인간과 유사한 움직임을 보이지 못하고 딱딱하고 단조로운 움직임을 보였다. 이런 단점을 보완하기 위해 가장 짧은 궤적을 찾는 알고리즘을 사용하여 보다 유연한 움직임을 구현하고, 초상화를 그리는 일련의 과정 중에서 입력된 영상을 가공하여 인간과 같이 그릴 수 있는 좌표를 효과적으로 정렬하고, 추출된 좌표를 바탕으로 로봇 암의 가장 빠르고 효율적인 이동궤적을 구한다.

A Comparative Study between Genetic Programming and Central Pattern Generator Based Gait Generation Methods for Quadruped Robots (4족 보행로봇의 걸음새에 대한 Genetic Programming 기법과 Central Pattern Generator 기반 생성기법의 비교 연구)

  • Hyun, Soo-Hwan;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.749-754
    • /
    • 2009
  • Two gait generation methods using GP(genetic programming) and CPG(Central Pattern Generator) are compared to develop a fast locomotion for quadruped robot. GP based technique is an effective way to generate few joint trajectories instead of the locus of paw positions and lots of stance parameters. The CPGs are neural circuits that generate oscillatory output from a input coming from the brain. Optimization for two proposed methods are executed and analysed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are experimented in real quadruped robot and performances and motion features of GP and CPG based methods are investigated.

Optimization of Mobile Robot Predictive Controllers Under General Constraints (일반제한조건의 이동로봇예측제어기 최적화)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.602-610
    • /
    • 2018
  • The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.

Development of Agile SFFS(Solid Freeform Fabrication System) for a Wide Variety of Engineering Materials (다종재료용 쾌속 임의형상가공시스템의 개발)

  • Ko, Min-Kook;Um, Tai-Joon;Joo, Young-Cheol;Kong, Yong-Hae;Chun, In-Gook;Bang, Jae-Cheol;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.311-314
    • /
    • 2001
  • The objectives of this paper include the development of an agile prototype of SFFS, the $CAFL^{VM}$(Computer Aided fabrication of Lamination for Various Material), which is suitable for the multi-item and small-quantity production and various material fabrication. This paper includes remodeling of the layer slices for the 2D cutting, supplementing information of the layer slices and developing process conditions to fabricate products of various shape. And also includes developing control hardware as well as software by enhancing BOF of the manipulator to 3 degree for the precise 2D cutting. It will generate optimal layer trajectory considering the dynamic characteristics of the laser beam. The system can be used as a competitive agile protype system in terms of various materials, fabrication speed, and accuracy by CAD modeling precise layer slicing, material development, robot path control, and optimization of the support structure.

  • PDF

A Path & Velocity Profile Planning Based on A* Algorithm for Dynamic Environment (동적 환경을 위한 A* 알고리즘 기반의 경로 및 속도 프로파일 설계)

  • Kwon, Min-Hyeok;Kang, Yeon-Sik;Kim, Chang-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.405-411
    • /
    • 2011
  • This paper presents a hierarchical trajectory planning method which can handle a collision-free of the planned path in complex and dynamic environments. A PV (Path & Velocity profile) planning method minimizes a sharp change of orientation and waiting time to avoid a collision with moving obstacle through detour path. The path generation problem is solved by three steps. In the first step, a smooth global path is generated using $A^*$ algorithm. The second step sets up the velocity profile for the optimization problem considering the maximum velocity and acceleration. In the third step, the velocity profile for obtaining the shortest path is optimized using the fuzzy and genetic algorithm. To show the validity and effectiveness of the proposed method, realistic simulations are performed.