• 제목/요약/키워드: robot simulator

검색결과 202건 처리시간 0.044초

다족 모바일 로봇의 최적 경로 생성을 위한 3D 시뮬레이터의 개발 (Development of a 3D simulator for optimal path generation of a mobile multiped robot)

  • 김기우;최우창;유영국;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.79-80
    • /
    • 2007
  • This paper deals with generating multi-ped mobile robot's optimal path and its simulation. The multi-ped robot has six-legs which make it possible to move actively by attached driving wheel at the end of legs. The simulation environment is created similarly to the indoor environment as simple obstacles and walls. Also simulator can reconstruct an simulation environment. In this paper, the suggested simulator can generate the optimal path from starting point to destination by applying the A* algorithm and Bug2 algorithm. Then it is possible to check algorithms as 3D screen and we can simulate under the generated path.

  • PDF

오프라인 프로그래밍을 이용한 스카라 로봇의 통합제어 시스템 설계 (Integrated Control System Design of SCARA Robot Based on Off-Line Programming)

  • 한덕기;김휘동;조흥식;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.398-403
    • /
    • 2002
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

오프라인 프로그래밍을 이용한 스카라 로봇의 통합제어 시스템 설계 (Integrated Control System of SCARA Robot Based on Off-Line Programming)

  • 정경규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.188-193
    • /
    • 2000
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95' graphic user interface i\environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, y Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

오프라인 프로그래밍을 이용한 스카라 로봇의 통합제어 시스템 설계 (Integrated Control System Design of SCARA Robot Based on Off-Line Programming)

  • 정동연;한성현
    • 한국생산제조학회지
    • /
    • 제11권3호
    • /
    • pp.21-27
    • /
    • 2002
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 ares SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

OLP를 이용한 스카라 로봇의 통합제어 시스템 설계 (Integrated Control System Design of SCARA Robot Based on OLP)

  • 정경규;정동연;신행봉;장영희;한성현;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.119-124
    • /
    • 2000
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

OLP를 이용한 산업용 로봇의 통합제어 시스템 설계 (Integrated Control System Design of Industrial Robot Based on Off-Line Programming)

  • 한덕기;김휘동;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.250-255
    • /
    • 2002
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 98 version. 4 axes industrial robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 98's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

변형 장애물을 고려한 최적 로봇 팔레타이징 경로 생성 알고리즘의 개발 (The Development of Trajectory Generation Algorithm of Palletizing Robot Considered to Time-variable Obstacles)

  • 유승남;임성진;강맹규;한창수;김성락
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.814-819
    • /
    • 2007
  • Palletizing task is well-known time consuming and laborious process in factory, hence automation is seriously required. To do this, artificial robot is generally used. These systems however, mostly user teaches the robot point to point and to avoid time-variable obstacle, robot is required to attach the vision camera. These system structures bring about inefficiency and additional cost. In this paper we propose task-oriented trajectory generation algorithm for palletizing. This algorithm based on $A^{*}$ algorithm and slice plane theory, and modify the object dealing method. As a result, we show the elapsed simulation time and compare with old method. This simulation algorithm can be used directly to the off-line palletizing simulator and raise the performance of robot palletizing simulator not using excessive motion area of robot to avoid adjacent components or vision system. Most of all, this algorithm can be used to low-level PC or portable teach pendent

  • PDF

이족 보행로봇의 균형추 형태에 따른 안정성 해석 (A Stability Analysis of a Biped Walking Robot about Balancing Weight)

  • 노경곤;김진걸
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.89-96
    • /
    • 2005
  • This paper is concerned with a balancing motion formulation and control of the ZMP (Zero Moment Point) for a biped-walking robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a walking robot which have a prismatic balancing weight is conditionally linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. For a stable gait, stabilization equations of a biped-walking robot are modeled as non-homogeneous second order differential equations for each balancing weight type, and a trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3dimensional graphic simulator is developed to get and calculate the desired ZMP and the actual ZMP. The operating program is developed for a real biped-walking robot IWRⅢ. Walking of 4 steps will be simulated and experimented with a real biped-walking robot. This balancing system will be applied to a biped humanoid robot, which consist legs and upper body, as a future work.

수중청소로봇의 운항 제어용 시뮬레이터 연구 (Study on a Navigated Simulator of the Underwater Cleaning Robot)

  • 최형식;강진일;홍성율;박한일;서주노;김문환;권경엽
    • 한국항해항만학회지
    • /
    • 제33권6호
    • /
    • pp.387-393
    • /
    • 2009
  • 본 연구에서는 수중청소로봇의 추종 성능과 통합 제어시스템 성능을 가시적으로 예측할 수 있는 3차원 시뮬레이터를 개발하였다. 수중청소로봇의 동역학적 해석을 기반으로, 시뮬레이터에는 실제 개발 중인 3차원형상의 수중청소로봇을 적용하고 로봇의 위치와 속도 등을 나타내는 창을 표시하였다. 또한 조이스틱을 사용하는 입력 및 제어 장치를 직접 제작하여 시리얼 통신을 통하여 시뮬레이터의 입력 및 제어에 사용하였다. 그리고 통합 항법 제어시스템을 설계하고, PI 기반의 퍼지 제어기를 포함하는 way-point tracking 시뮬레이션을 통하여 성능을 검증하였다.