• Title/Summary/Keyword: robot simulator

Search Result 202, Processing Time 0.026 seconds

Development of simulator for Computer-integrated Robotic Surgery system and Design of its Auto-illumination system (수술통합시스템 시뮬레이터 개발과 자동조명시스템의 설계)

  • Lee, Soo-Gang;Chung, Goo-Bong;Yi, Byung-Ju;Kim, Whee-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.456-458
    • /
    • 2004
  • Recent medical robot systems perform surgery operations, by following the preplanned trajectory and surgical procedures. Depending on the complexity of surgery operations, they are operated in manual, semi-automatic or full automatic mode. To improve the performance of those medical robot systems, development of the simulator and more advanced auto-illumination system, in which intensity of light, direction and focal point can be controlled automatically according to the varied environments during surgical operations. are required. Therefore, in this paper, the simulator for SPINEBOT system which is a computer-intergrated robotic surgery system are developed. And further, an auto-illumination system which will be integrated to the SPINEBOT system is investigated and its preliminary design is described.

  • PDF

A Study on Track Record and Trajectory Control of Articulated Robot Based on Monitoring Simulator for Smart Factory

  • Kim, Hee-Jin;Dong, Guen-Han;Kim, Dong-Ho;Jang, Gi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.149-161
    • /
    • 2020
  • We describe a new approach to implement of trajectory control and track record of articulated manipulator based on monitoring simulator for smart factory. The learning control algorithm was applied in implementation real-time control to provide enhanced motion control performance for robotic manipulators. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, or values of manipulator parameters and payload. Performance of the proposed controller is illustrated by simulation and experimental results for robot manipulator consisting of six joints at the joint space and Cartesian space.by monitoring simulator.

Comparison of Collision Avoidance Algorithm for a Mobile Robot using a Simulation (시뮬레이션을 이용한 이동 로봇의 충돌회피 알고리즘 비교)

  • Kim, Kwang-Jin;Ko, Nak-Yong;Park, Se-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.187-194
    • /
    • 2012
  • This paper compares two collision avoidance algorithms using a simulator. The collision avoidance is vital for autonomous navigation of a mobile robot. Artificial potential field method and elastic force method are major approaches for the collision avoidance. The two algorithms are compared in the respect of the time for motion completion and the length of the motion path. The simulator is developed based on IPC(Inter Process Communication) and a differential drive mobile robot is used for the comparison.

Synchronous Robot Simulator both on Virtual and Real Space for Quadruped Pet Robots (가상공간과 실공간의 동기화를 고려한 4족 애완 로봇 시뮬레이터 개발)

  • Kim, Hong-Seok;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this paper, we developed a new MSRDS(Microsoft Robotics Developer Studio) simulator for a quadruped pet robot with synchronization of virtual and real robots. By using this simulator, it is possible to reduce time and cost for gait and motion design and it will help for commercialization of service pet robots. In the research point of view, the simulator can be used to examine the model differences between the virtual and the real robots. Since this simulator implements the coordinated control of the virtual and real robots, it can be used as an internet game using two remote pet robots.

Simplified Module Based Self-collision Detection for Humanoid Robots (간략화 된 모듈 기반의 휴머노이드 로봇을 위한 자기충돌 탐지)

  • Kwak, Hwan-Joo;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.240-241
    • /
    • 2008
  • We are presenting the efficient and robust simplified module based self-collision detection of humanoid robot simulator. For safe and reliable operations of humanoid robot, the self-collision detection is essential and extremely important. The main methods of self-collision detection are inverse X-Y-Z fixed angles and module distance filtering (MDF). According to experiments on the humanoid robot simulator with the self-collision detection, we could have a confidence about the efficiency of the self-collision.

  • PDF

Multi-robot simulator for collision avoidance (충돌 회피를 위한 다중 로봇 시뮬레이터)

  • 이재용;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.417-422
    • /
    • 1993
  • Robots working in the multiple robot system can perform the variety of tasks compared to the single robot system, while they are subject to the various tight constraints such as the precise coordination and the mutual collision avoidance during the task execution. In this paper, we provide an algorithm and graphical verification for collision avoidance between two robots working together. The algorithm calculates the minimum time delay for collision avoidance and the graphical verification is performed through the 3-D graphic simulator.

  • PDF

The Development of a Miniature Humanoid Robot System (소형 휴머노이드 로봇 시스템 개발)

  • Sung, Young-Whee;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.420-426
    • /
    • 2001
  • In this paper, we introduce a case study of developing a miniature humanoid robot that has 16 degrees of freedom and is able to perform statically stable walking. The developed humanoid robot is 37cm tall and weighs 1,200g. RC servo motors are used as actuators. The robot can walk forward and turn to any direction on an even surface. It equipped with a small digital camera, so it can transmit vision data to a remote host computer via wireless modem. The robot can be operated in two modes: One is a remote-controlled mode, in which the robot behaves according to the command given by a human operator through the user-interface program running on a remote host computer, the other is a stand-alone mode, in which the robot behaves autonomously according the pre-programmed strategy. The user-interface program also contains a robot graphic simulator that is used to produce and verify the robot\`s gait motion. In our walking algorithm, the ankle joint is mainly used for balancing the robot. The experimental results shows that the developed robot can perform statically stable walking on an even surface.

  • PDF

A Study on Robot Progrmming System with Graphic Simulator (그래픽 시뮬레이터를 갖는 로보트 프로그래밍 시스템에 관한 연구)

  • Ryeo, Jeong Beom;Han, Joon Soo;Choi, Jong Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.223-229
    • /
    • 1987
  • This robot programming system is designed for off-line programming of numerical controlled robot manipulator. This system consists of manipulation interpreter, world model manager, graphic simulator and arm controller for simple robot programming language. The system has graphic simulation system as a debugging tool for task programming and it simulates the robot motion graphically on a CRT terminal, which makes the assessment of the possible robot motion.

  • PDF

Experimental Application of Robot Operability Simulator (ROSim) to the Operability Assessment of Military Robots (로봇 운용성 시뮬레이터(ROSim)의 군사로봇 운용성 평가에 실험적 적용 연구)

  • Choi, Sangyeong;Park, Woosung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • Military robots are expected to play an important role in the future battlefield, and will be actively engaged in dangerous, repetitive and difficult tasks. During the robots perform the tasks a human operator controls the robots in a supervisory way. The operator recognizes battlefield situations from remote robots through an interface of the operator control center, and controls them. In the meantime, operator workload, controller interface, robot automation level, and task complexity affect robot operability. In order to assess the robot operability, we have developed ROSim (Robot Operational Simulator) incorporating these operational factors. In this paper, we introduce the results of applying ROSim experimentally to the assessment of reconnaissance robot operability in a battle field. This experimental assessment shows three resulting measurements: operational control workload, operational control capability, mission success rate, and discuss its applicability to the defense robot research and development. It is expected that ROSim can contribute to the design of an operator control center and the design analysis of a human-robot team in the defense robot research and development.

Implementation of Facial Robot 3D Simulator For Dynamic Facial Expression (동적 표정 구현이 가능한 얼굴 로봇 3D 시뮬레이터 구현)

  • Kang, Byung-Kon;Kang, Hyo-Seok;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1121-1122
    • /
    • 2008
  • By using FACS(Facial Action Coding System) and linear interpolation, a 3D facial robot simulator is developed in this paper. This simulator is based on real facial robot and synchronizes with it by unifying protocol. Using AUs(Action Unit) of each 5 basic expressions and linear interpolation makes more various dynamic facial expressions.

  • PDF