• Title/Summary/Keyword: robot kinematics

Search Result 409, Processing Time 0.026 seconds

A remote control robot manipulator using force feedback joystick (로봇 매니퓰레이터 원격 제어)

  • Kim, In-Soo;Hyun, Woong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1823-1824
    • /
    • 2008
  • We propose a remote controlled robot manipulator using force feedback joystick. User can control easily 5 d.o.f robot manipulator in 3 demensional space using general joystick. A force sensor attached in developed gripper sends signal to main robot controller so as to know gripper grasp the object. The signal also sent to user through force feedback joystick. We designed a dexterous 5 d.o.f robot manipulator analysis the kinematics and inverse kinematics. The robot was simply developed using serial RC motor. As a main robot controller, we use 32bit MPU(AT91SAM7256) and micro C/OS. To show the validity of our developed robot, a several experiments were demonstrated.

  • PDF

Cooperative Control of Mobile Robot for Carrying Object (물체 운반을 위한 다수 로봇의 협조제어)

  • Jeong, Hee-In;Hoang, Nhat-Minh;Woo, Chang-Jun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • This paper proposed a method of cooperative control of three mobile robots for carrying an object placed on a floor together. Each robot moves to the object independently from its location to a pre-designated location for grasping the object stably. After grasping the common object, the coordination among the robots has been achieved by a master-slave mode. That is, a trajectory planning has been done for the master robot and the distances form the master robot to the two slave robots have been kept constant during the carrying operation. The localization for mobile robots has been implemented using the encoder data and inverse kinematics since the whole system does not have the slippage as much as a single mobile robot. Before the carrying operation, the lifting operations are implemented using the manipulators attached on the top of the mobile robots cooperatively. The real cooperative lifting and carrying operations are implanted to show the feasibility of the master-slave mode control based on the kinematics using the mobile manipulators developed for this research.

Inverse Kinematics Solution and Optimal Motion Planning for Industrial Robots with Redundancy (여유 자유도를 갖는 산업용 로봇의 역기구학 해석 및 최적 동작 계획)

  • Lee, Jong-Hwa;Kim, Ja-Young;Lee, Ji-Hong;Kim, Dong-Hyeok;Lim, Hyun-Kyu;Ryu, Si-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • This paper presents a method to optimize motion planning for industrial manipulators with redundancy. For optimal motion planning, first of all, particular inverse kinematic solution is needed to improve efficiency for manipulators with redundancy working in various environments. In this paper, we propose three kinds of methods for solving inverse kinematics problems; numerical and combined approach. Also, we introduce methods for optimal motion planning using potential function considering the order of priority. For efficient movement in industrial settings, this paper presents methods to plan motions by considering colliding obstacles, joint limits, and interference between whole arms. To confirm improved performance of robot applying the proposed algorithms, we use two kinds of robots with redundancy. One is a single arm robot with 7DOF and another is a dual arm robot with 15DOF which consists of left arm, right arm with each 7DOF, and a torso part with 1DOF. The proposed algorithms are verified through several numerical examples as well as by real implementation in robot controllers.

Design of a robot controller using realtime-multiasking OS (실시간 다중처리 운영체제를 이용한 로보트 제어기의 설계)

  • 최성락;정광조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.654-659
    • /
    • 1993
  • In this paper, a robot controller that has a real time-multitasking OS (Operating System) is developed. It can do given jobs in realtime, so its effectiveness is increased. The controller has several CPU boards, and it is needed to communicate among these boards. For that reason, it is adopted VME bus system and VMEexec OS that can process multiprocess in realtime. Multiprocess includes robot language edit process, vision process, low level motion control process, and teach process in higher layer. And dynamics, kinematics, and inverse kinematics that require realtime calculation are included in lower layer.

  • PDF

신경회로망에 의한 로보트의 역 기구학 구현

  • 이경식;남광희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.144-148
    • /
    • 1989
  • We solve the inverse kinematics problems in robotics by employing a neural network. In the practical situation. it is not easy to obtain the exact inverse kinematics solution, since there are many unforeseen errors such as the shift of a robot base the link's bending, et c. Hence difficulties follow in the trajectory planning. With the neural network, it is possible to train the robot motion so that the robot follows the desired trajectory without errors even under the situation where the unexpected errors are involved. In this work, Back-Propagation rule is used as a learning method.

  • PDF

Force Control of a Blind Mobile Robot: Analysis, Simulations and Experiments (장님 이동 로봇의 힘 제어 : 분석, 시뮬레이션 및 실험)

  • Jeon, Poong-Woo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.798-807
    • /
    • 2003
  • We propose a blind mobile robot force control algorithm that uses force information as a guidance toward to the goal position. Based on the mobile robot dynamics, the control law is formed from explicit force errors. Simulation studies are conducted based on the kinematics and the dynamics of the mobile robot. Simulation results show that good force tracking can be achieved. In order to confirm simulation results, experiments are performed. The robot is commanded to follow unknown environment with maintaining a certain desired force. Experimental results show that the blind mobile robot successfully maintains contact with a regulated desired force and arrives at the goal position.

Kinematics Analysis and Implementation of a Motion-Following Task for a Humanoid Slave Robot Controlled by an Exoskeleton Master Robot

  • Song, Deok-Hui;Lee, Woon-Kyu;Jung, Seul
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.681-690
    • /
    • 2007
  • This article presents the kinematic analysis and implementation of an interface and control of two robots-an exoskeleton master robot and a human-like slave robot with two arms. Two robots are designed and built to be used for motion-following tasks. The operator wears the exoskeleton master robot to generate motions, and the slave robot is required to follow after the motion of the master robot. To synchronize the motions of two robots, kinematic analysis is performed to correct the kinematic mismatch between two robots. Hardware implementation of interface and control is done to test motion-following tasks. Experiments are performed to confirm the feasibility of the motion-following tasks by two robots.

Development of Biped Walking Robot with Stable Walking (안정적 보행을 갖는 이족 보행 로봇의 개발)

  • Seo, Chang-Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.82-90
    • /
    • 2008
  • In this paper, we introduce a biped walking robot which can do static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and is constructed by 22 RC servo motors. Before making an active algorithm, we generate the motions of robot with a motion simulator developed using C language. The two dimensional simulator is based on the inverse kinematics and D-H transform. The simulator implements various motions as we input the ankle's trajectory. Also the simulator is developed by applying the principle of inverted pendulum to acquisite the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle or pelvic when the robot lifts up its one side leg during the walking. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which is connected with laptop computer by serial cable.

  • PDF

Tracking Control for Mobile Robot Based on Fuzzy Systems (퍼지 시스템을 이용한 이동로봇의 궤적제어)

  • 박재훼;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.466-472
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. Since the mobile robot has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile robot. One of the well-known tracking controllers for the mobile robot is the back-stepping controller. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot. The conventional back-stepping controller is affected by the derived velocity reference by a kinematic controller. To improve the performance of the conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. The new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. Simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

Development of a Biped Walking Robot

  • Kim, Yong-Sung;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2350-2355
    • /
    • 2005
  • In this paper, we introduce biped walking robot which can static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and 22 RC servo motors are used to actuate. Before made an active algorithm, we generated the motions of robot with the motion simulator which developed using by C language. The two dimension simulator is Based on the inverse kinematics and D-H transform. The simulator implements various motions as inputted the ankle's trajectory. Also we developed a simulator which is applied the principle of inverted pendulum to acquires the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle and pelvis when the robot lifts up its one side leg during the working. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which connected with laptop computer by serial cable.

  • PDF