• Title/Summary/Keyword: robot harvest

Search Result 18, Processing Time 0.025 seconds

Strawberry Harvesting Robot for Bench-type Cultivation

  • Han, Kil-Su;Kim, Si-Chan;Lee, Young-Bum;Kim, Sang-Chul;Im, Dong-Hyuk;Choi, Hong-Ki;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • Purpose: An autonomous robot was developed for harvesting strawberries cultivated in bench-type systems. Methods: The harvest robot consisted of four main components: an autonomous vehicle, a manipulator with four degrees of freedom (DOF), an end effector with two DOFs, and a color computer vision system. Strawberry detection was performed based on 3D image and distance information obtained from a stereo CCD color camera and a laser device, respectively. Results: In this work, a Cartesian type manipulator system was designed, including an intermediate revolute axis and a double driven arm-based joint axis, so that it could generate collision-free motions during harvesting. A DC servomotor-driven end-effector, consisting of a gripper and a cutter, was designed for gripping and cutting the strawberry stem without damaging the strawberry itself. Real-time position tracking algorithms were developed to detect, recognize, trace, and approach strawberries under natural light conditions. Conclusion: The developed robot system could harvest a strawberry within 7 seconds without damage.

Design of Multi-Linked Lifter (다관절 고소 작업 장치의 개발)

  • Kim, Myun-Hee;Lee, Sang-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.562-565
    • /
    • 2000
  • For solving problems of manpower and improving working environment, Robot System have been introduced. In the past, Robot System was adopted mass production, indoor factory condition, but present Robot System is applied to many other fields. This applied field is Robot System was adopted fruit harvest, maintenance, and so on. The developed Multi-Linked Lifter is applied to eminant multi-purpose working. The purpose of this study is to develop control algorithm for this equipment composed of multi-linked manipulator.

  • PDF

A Review of End-effector for Fruit and Vegetable Harvesting Robot (과채류 수확을 위한 로봇 엔드이펙터 리뷰)

  • Seol, Jaehwi;Lee, Sechang;Son, Hyoung Il
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2020
  • Fruit and vegetable harvesting robots have been widely studied and developed in recent years to reduce the cost of harvesting tasks such as labor and time. However, harvesting robots have many challenges due to the difficulty and uncertainty of task. In this paper, we characterize the crop environment related to the harvesting robot and analyzes state-of-the-art of the harvesting robot especially, in the viewpoint of robotic end-effector. The end-effector, an one of most important element of the harvesting robot, was classified into gripper and harvesting module, which were reviewed in more detail. Performance measures for the evaluation of harvesting robot such as test, detachment success, harvest success, and cycle time were also introduced. Furthermore, we discuss the current limitations of the harvesting robot and challenges and directions for future research.

Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model (딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘)

  • Ko, KwangEun;Park, Hyun Ji;Jang, In Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

BASIC MECHANISM OF ROBOT ADAPTED TO PHYSICAL PROPERTIES OF TOMATO PLANT

  • Kondo, N.;Monta, M.;Shibano, Y.;Mohri, K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.840-849
    • /
    • 1993
  • In this paper, it is reported that manipulator and hand-required for harvesting tomato were studied. At first, basic physical properties of tomato plant were investigated such as position of fruit, length of stems and leaves, width between ridges and son on . Secondly , basic mechanism of articulate manipulators with 5 to 7 degree of freedom were investigated by using evaluation indexes such as operational space, measure of manipulatability , posture diversity and so on. From the results, an articulate manipulator with 7 degrees of freedom was selected and the manipulator was manufactured as a trial according to the mechanism. Thirdly , physical properties about fruit and peduncle of tomato were also researched such as diameter, length , picking force and so on. Based on the properties , tomato harvesting hand with absorptive pad were also made as a trial. Finally, after the hand was attached to the manipulator, harvesting experiment was done in greenhouse . It was observed th t the robot could harvest satisfactorily , not only since the robot adapted to physical properties of tomato plant was manufactured but also since phyllotaxis of tomatoes was so methodical that all fruit clusters emerged in the same direction.

  • PDF

Robotic harvest of a latissimus dorsi flap using a single-port surgical robotic system in breast reconstruction

  • Joo, Oh Young;Song, Seung Yong;Lew, Dae Hyun;Park, Hyung Seok;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.48 no.6
    • /
    • pp.577-582
    • /
    • 2021
  • Robot-assisted surgery is evolving to incorporate a higher number of minimally invasive techniques. There is a growing interest in robotic breast reconstruction that uses autologous tissue. Since a traditional latissimus dorsi (LD) flap leads to a long donor scar, which can be an unpleasant burden to patients, there have been many attempts to decrease the scar length using minimally invasive approaches. This study presents the case of a patient who underwent a robot-assisted nipple-sparing mastectomy followed by immediate breast reconstruction with an LD flap using a single-port robotic surgery system. With the assistance of a single-port robot, a simple docking process using a short and less visible incision is possible. Compared to multiport surgery systems, single-port robots can reduce the possibility of collision between robotic arms and provide a clear view of the medial border of the LD where the curvature of the back restricts the visual field. We recommend the use of single-port robots as a minimally invasive approach for harvesting LD flaps.

A HARMS-based heterogeneous human-robot team for gathering and collecting

  • Kim, Miae;Koh, Inseok;Jeon, Hyewon;Choi, Jiyeong;Min, Byung Cheol;Matson, Eric T.;Gallagher, John
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • Agriculture production is a critical human intensive task, which takes place in all regions of the world. The process to grow and harvest crops is labor intensive in many countries due to the lack of automation and advanced technology. Much of the difficult, dangerous and dirty labor of crop production can be automated with intelligent and robotic platforms. We propose an intelligent, agent-oriented robotic team, which can enable the process of harvesting, gathering and collecting crops and fruits, of many types, from agricultural fields. This paper describes a novel robotic organization enabling humans, robots and agents to work together for automation of gathering and collection functions. The focus of the research is a model, called HARMS, which can enable Humans, software Agents, Robots, Machines and Sensors to work together indistinguishably. With this model, any capability-based human-like organization can be conceived and modeled, such as in manufacturing or agriculture. In this research, we model, design and implement a technology application of knowledge-based robot-to-robot and human-to-robot collaboration for an agricultural gathering and collection function. The gathering and collection functions were chosen as they are some of the most labor intensive and least automated processes in the process acquisition of agricultural products. The use of robotic organizations can reduce human labor and increase efficiency allowing people to focus on higher level tasks and minimizing the backbreaking tasks of agricultural production in the future. In this work, the HARMS model was applied to three different robotic instances and an integrated test was completed with satisfactory results that show the basic promise of this research.

DEVELOPMENT OF 3-D POSITION DETECTING TECHNIQUE BY PAN/TILT

  • Son, J.R.;Kang, C.H.;Han, K.S.;Jung, S.R.;Kwon, K.Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.698-706
    • /
    • 2000
  • It is very difficult to mechanize tomato harvesting because identifying a tomato partly covered with leaves and stalks is not easy. This research was conducted to develop tomato harvesting robot which can identify a target tomato, determine its three dimensional position, and harvest it in a limited time. Followings were major findings in this study. The first visual system of the harvesting robot was composed of two CCD cameras, however, this could not detect tomatoes which are not seen on the view finder of the camera especially those partly covered by leaves or stalks. The second visual device, combined with two CCD cameras and pan/tilt procedures was designed to minimize the positioning errors within ${\pm}10mm$, but this is still not enough to detect tomatoes partly covered with leaves etc. Finally, laser distance detector was added to the visual system that could reduce the position detecting errors within 10mm in X-Y direction and 5mm in Z direction for the partly covered tomatoes.

  • PDF

Development of Hybrid Manipulator for Melon Harvesting Works (멜론 재배작업용 하이브리드 매니플레이터 개발)

  • Kim, Y.Y.;Cho, S.I.;Hwang, H.;Hwang, K.Y.;Park, T.J.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.52-58
    • /
    • 2006
  • Various robots were developed for harvesting fruits and vegetables. However, each robot was designed for a specific task such as harvesting apples or vegetables. This has been a big hurdle in application of robots to agriculture. A new type of hybrid manipulator with both parallel and serial joints was developed and designed to apply to various kinds of field operations. The hybrid manipulator had 2 extra degree of freedom in serial joints which made it flexible in switching one to the other type of hybrid manipulator, for example, PUMA to SCARA. And it was designed to harvest heavy fruits such as musky melons or water melons even behind leaves or branches of tree. This hybrid manipulator showed less than $\pm1mm$ position error. It was concluded that the hybrid manipulator was an effective and feasible tool to perform various works and to increase working performance.