• 제목/요약/키워드: robot controller

검색결과 1,557건 처리시간 0.028초

회전 관절형 로봇 매니플레이터의 강인제어 (Robust Control of a Robot Manipulator with Revolute Joints)

  • 신규현;이수한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2002
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of serial link robot dynamics. The stability of the robot with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot system is stable, and has excellent trajectory tracking performance.

  • PDF

32 비트 DSP를 사용한 로보트 제어기의 개발 (Robot controller with 32-bit DSP chip)

  • 김성권;황찬영;전병환;이규철;홍용준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.292-298
    • /
    • 1991
  • A new 6-axis robot controller with a high-speed 32-bit floating-point DSP TMS32OC30 has been developed in Samsung Electronics. The controller composed of Intel 80386 microprocessor for the main controller, and TKS32OC30 DSP chip for joint position controller. The characteristics of the controller are high sampling rate of 200us and fast reponsibility. The main controller supports MS-DOS, kinematics, trajectory planning, and sensor fusion functions which are vision, PLC, and MAP. The one high speed DSP chip is used for controlling 6 axes of a robot in 200us simultaneously. The control law applied is PID controller including a velocity feedforvard in joint position controller. The performance tests, such as command following, CP, were conducted for the controller integrated with a 6 axes robot developed in Samsung Electronics. The results showed a good performance. This controller can also perform the system control with other controllers, the communication with high priority controllers, and visual information processing.

  • PDF

다관절 휴머노이드 상체 로봇의 제어를 위한 신경망 보상 퍼지 제어기 구현 및 실험 (Experimental Studies of a Fuzzy Controller Compensated by Neural Network for Humanoid Robot Arms)

  • 송덕희;노진석;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.671-676
    • /
    • 2007
  • In this paper, a novel neuro-fuzzy controller is presented. The generic fuzzy controller is compensated by a neural network controller so that an overall control structure forms a neuro-fuzzy controller. The proposed neuro-fuzzy controller solves the difficulty of selecting optimal fuzzy rules by providing the similar effect of modifying fuzzy rules simply by changing crisp input values. The performance of the proposed controller is tested by controlling humanoid robot arms. The humanoid robot arm is analyzed and implemented. Experimental studies have shown that the performance of the proposed controller is better than that of a PID controller and of a generic fuzzy PD controller.

Development of Fuzzy Steering Controller for Outdoor Autonomous Mobile Robot with MR sensor

  • Kim, Jeong-Heui;Son, Seok-Jun;Lim, Young-Cheol;Kim, Tae-Gon;Ryoo, Young-Jae;Kim, Eui-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.105.5-105
    • /
    • 2001
  • This paper describes a fuzzy steering controller for an autonomous mobile robot with MR sensor. Using the magnetic field(Bx, By, Bz) obtained from the MR sensor, we designed fuzzy controller for driving on the road center. Fuzzy rule base was built to magnetic field(Bx, By, Bz). To develop an autonomous mobile robot simulation program, we have done modeling MR sensor, dynamic model of mobile robot and coordinate transformation. A computer simulation of the robot including mobile robot dynamics and steering was used to verify the steering performance of the mobile robot controller using the fuzzy logic Good results were obtained by computer simulation. So, we confirmed the robustness of the proposed fuzzy controller by computer ...

  • PDF

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • 한국산업융합학회 논문집
    • /
    • 제27권4_1호
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.

제어기강성이 로봇관절의 진동에 미치는 영향 (The Effects of Controller Stiffness on the Vibration of Robot Joints)

  • 경현태;김재원;김문상
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.260-270
    • /
    • 1994
  • With the prevalent use of robot, the interests in moving speed of robot have been increasing for the purpose of upgrading performance of production. But the faster robot manipulator moves, the worse working accuracies are. And mechanical vibration is more and more serious with the increment of the moving speed of robot. So, the study on the cause and control method of robot vibration is one of the points of issue in robotics. This paper focuses on the vibration of 3 DOF parallel link drive mechanism robot. We assume that links of robot manipulator are `rigid' and joints are `flexible elements'. Governing equations of robot system including controller, servo amplifier, D.C servo motor, transmission with elasticity, and manipulator dynamics are derived. On the basis of modelling, we define `controller stiffness' by the proportional gain of controller and `stiffness of transmission'. Numerical and experimental research is performed to study vibration phenomena of robot induced from the variation of these two defined stiffnesses, and its results are shown.

커튼월 설치 로봇 컨트롤러의 설계 및 사용성 평가에 관한 연구 (A Study for Usability and Designing Manual Controller of a Curtain‐wall Installation Robot)

  • 이승열;석재혁;한정완;김병화;한창수
    • 대한인간공학회지
    • /
    • 제25권4호
    • /
    • pp.71-80
    • /
    • 2006
  • A construction robot has been developed for higher productivity and better safety in various construction fields. Especially, curtain wall is suitable for outer wall material of tall commercial building and apartment complexes. This heavy material is, however, hard to install with a manpower and outdated equipment. For this reason, the prototype of ASCI (Automation System for Curtain wall Installation) was developed. This system has a robot controller(i.e. hand-held remote control unit) for the transfer information signal between human operator and robot system. Although study has been conducted on manual controller of ASCI, hardly any information is known about the operator's opinion. In this study, a questionnaire was completed by operator to get their opinion about aspects which need to design a more comfortable and productive manual controller of construction machinery, robot included. Through the result of study, it is expected that this technical data is contributed to the robot controller design for comfort and productivity of various industrial machinery.

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.

Mobile Robot Destination Generation by Tracking a Remote Controller Using a Vision-aided Inertial Navigation Algorithm

  • Dang, Quoc Khanh;Suh, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.613-620
    • /
    • 2013
  • A new remote control algorithm for a mobile robot is proposed, where a remote controller consists of a camera and inertial sensors. Initially the relative position and orientation of a robot is estimated by capturing four circle landmarks on the plate of the robot. When the remote controller moves to point to the destination, the camera pointing trajectory is estimated using an inertial navigation algorithm. The destination is transmitted wirelessly to the robot and then the robot is controlled to move to the destination. A quick movement of the remote controller is possible since the destination is estimated using inertial sensors. Also unlike the vision only control, the robot can be out of camera's range of view.

3자유도 로봇의 하이브리드 위치/힘 제어 (Hybrid Position/Force Control of 3 DOF Robot)

  • 양선호;박태욱;양현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF