• Title/Summary/Keyword: robot algorithm

Search Result 2,519, Processing Time 0.036 seconds

Real-Time System Design and Point-to-Point Path Tracking for Real-Time Mobile Robot

  • Wang, F.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.162-167
    • /
    • 2003
  • In this paper, a novel feasible real-time system was researched for a differential driven wheeled autonomous mobile robot so that the mobile robot can move in a smooth, safe and elegant way. Least Square Minimum Path Planning was well used for the system to generate a smooth executable path for the mobile robot, and the point-to-point tracking algorithm was presented as well as its application in arbitrary path tracking. In order to make sure the robot can run elegantly and safely, trapezoidal speed was integrated into the point-to-point path tracking algorithm. The application to guest following for the autonomous mobile robot shows its wide application of the algorithm. The novel design was successfully proved to be feasible by our experiments on our mobile robot Interactive Robot Usher (IRU) in National University of Singapore.

  • PDF

Point Number Algorithm for Position Identification of Mobile Robots (로봇의 위치계산을 위한 포인트 개수 알고리즘)

  • Liu, Jiang;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.427-429
    • /
    • 2005
  • This paper presents the use of Point Number Algorithm (PNA) for real-time image processing for position identification of mobile robot. PNA can get how many points in the image gotten from the robot vision and can calculate the distance between the robot and the wall by the number of the points. The algorithm can be applied to a robot vision system enable to identify where it is in the workspace. In the workspace, the walls are made up by white background with many black points on them evenly. The angle of the vision is set invariable. So the more black points in the vision, the longer the distance is from the robot to the wall. But when the robot does not face the wall directly, the number of the black points is different. When the robot faces the wall, the least number of the black points can be gotten. The simulation results are presented at the end of this paper.

  • PDF

Improvement of Strategy Algorithm for Soccer Robot (축구 로봇의 전략 알고리즘 개선)

  • 김재현;이대훈;이성민;최환도;김중완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.177-181
    • /
    • 2001
  • This paper presents an strategy algorithm of a soccer robot. We simply classified strategy of soccer robot as attack and defense. We use DC-motor in our Soccer Robot. We use the vision system made by MIRO team of Kaist and Soty team for image processing. Host computer is made by Pentium III. The RF module is used for the communication between each robot and the host computer. Fuzzy logic is applied to the path planning of our robot. We improve strategy algorithm of soccer robot. Here we explain improvement of strategy algorithm and fault of the our soccer robot system.

  • PDF

Mobile Robot Destination Generation by Tracking a Remote Controller Using a Vision-aided Inertial Navigation Algorithm

  • Dang, Quoc Khanh;Suh, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.613-620
    • /
    • 2013
  • A new remote control algorithm for a mobile robot is proposed, where a remote controller consists of a camera and inertial sensors. Initially the relative position and orientation of a robot is estimated by capturing four circle landmarks on the plate of the robot. When the remote controller moves to point to the destination, the camera pointing trajectory is estimated using an inertial navigation algorithm. The destination is transmitted wirelessly to the robot and then the robot is controlled to move to the destination. A quick movement of the remote controller is possible since the destination is estimated using inertial sensors. Also unlike the vision only control, the robot can be out of camera's range of view.

Implementation of Algorithm to Write Articles by Stock Robot

  • Sim, Da Hun;Shin, Seung Jung
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.40-47
    • /
    • 2016
  • Journalism robot by using a computer algorithm, while maintaining the precision and reliability of the existing media refers to an article which is automatically created. In this paper, we introduce 'stock robot' of robot journalism which writes securities articles and describe artificial intelligence algorithms in stages. Key steps of stock robot implemented artificial intelligence algorithm through four steps of data collection and storage, key event extraction, article content production, and article production. This research has developed a stock robot that collects and analyzes data on social issues and stock indexes for the last 2 years. In the future, as the algorithm is further developed, it becomes possible to write securities articles quickly and accurately through social issues. It will also provide customized information tailored to the user's preferences.

Optimizing Path Finding based on Dijkstra's Algorithm for a Quadruped Walking Robot TITAN-VIII (4족보행 로봇 TITAN-VIII의 Dijkstra's Algorithm을 이용한 최적경로 탐색)

  • Nguyen, Van Tien;Ahn, Byong-Won;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.574-584
    • /
    • 2017
  • In this paper, the optimizing path finding control method is studied for a Legged-robot. It's named TITAN-VIII. It has a lot of advantages over the wheeled robot in the ability to walk freely on an irregular ground. However, the moving speed on the ground of the Legged-robot is slower than the Wheeled-robot's. Consequently, the purpose of the method is presented in this paper to minimize its time when it walks to a goal. It find the path, our approach is based on an algorithm which is called Dijkstra's algorithm. In the rest of paper, the various posture of the robot is discussed to keep the robot always in the statically stable. Based on above works, the math formulas are presented to determine the joint angles of the robot. After that an algorithm is designed to find and keep robot on the desired trajectory. Experimental results of the proposed method are demonstrated in the last of paper.

Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector (충돌 벡터를 이용한 이동로봇의 동적 장애물 회피)

  • Seo, Dae-Geun;Lyu, Eun-Tae;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm (제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

A combined auction mechanism for online instant planning in multi-robot transportation problem

  • Jonban, Mansour Selseleh;Akbarimajd, Adel;Hassanpour, Mohammad
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • Various studies have been performed to coordinate robots in transporting objects and different artificial intelligence algorithms have been considered in this field. In this paper, we investigate and solve Multi-Robot Transportation problem by using a combined auction algorithm. In this algorithm each robot, as an agent, can perform the auction and allocate tasks. This agent tries to clear the auction by studying different states to increase payoff function. The algorithm presented in this paper has been applied to a multi-robot system where robots are responsible for transporting objects. Using this algorithm, robots are able to improve their actions and decisions. To show the excellence of the proposed algorithm, its performance is compared with three heuristic algorithms by statistical simulation approach.