• Title/Summary/Keyword: robot algorithm

검색결과 2,519건 처리시간 0.036초

Design of a Fuzzy-Sliding Mode Controller for a SCARA Robot to Reduce Chattering

  • Go, Seok-Jo;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.339-350
    • /
    • 2001
  • To overcome problems in tracking error related to the unmodeled dynamics in the high speed operation of industrial robots, many researchers have used sliding mode control, which is robust against parameter variations and payload changes. However, these algorithms cannot reduce the inherent chattering which is caused by excessive switching inputs around the sliding surface. This study proposes a fuzzy-sliding mode control algorithm to reduce the chattering of the sliding mode control by fuzzy rules within a pre-determined dead zone. Trajectory tracking simulations and experiments show that chattering can be reduced prominently by the fuzzy-sliding mode control algorithm compared to a sliding mode control with two dead zones, and the proposed control algorithm is robust to changes in payload. The proposed control algorithm is implemented to the SCARA (selected compliance articulated robot assembly) robot using a DSP (digital signal processor) for high speed calculations.

  • PDF

초음파 위치 센서를 이용한 차량 로봇의 경로 추종에 관한 연구 (A Study for Path Tracking of Vehicle Robot Using Ultrasonic Positioning System)

  • 윤석민;여태경;박성재;홍섭;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.795-800
    • /
    • 2008
  • The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental

  • PDF

실내 환경에서의 경비로봇용 주행시스템 (A Navigation System for a Patrol Robot in Indoor Environments)

  • 최병욱;이영민;박정호;신동관
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.117-124
    • /
    • 2006
  • In this paper, we develope the navigation system for patrol robots in indoor environment. The proposed system consists of PDA map modelling, a localization algorithm based on a global position sensor and an automatic charging station. For the practical use in security system, the PDA is used to build object map on the given indoor map. And the builded map is downloaded to the mobile robot and used in path planning. The global path planning is performed with a localization sensor and the downloaded map. As a main controller, we use PXA270 based hardware platform in which embedded linux 2.6 is developed. Data handling for various sensors and the localization algorithm are performed in the linux platform. Also, we implemented a local path planning algorithm for object avoidance with ultra sonar sensors. Finally, for the automatic charging, we use an infrared ray system and develop a docking algorithm. The navigation system is experimented with the two-wheeled mobile robot using North-Star localization system.

  • PDF

플로우 네트워크를 이용한 지능형 로봇의 경로계획 (Path Planning for an Intelligent Robot Using Flow Networks)

  • 김국환;김형;김병수;이순걸
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.255-262
    • /
    • 2011
  • Many intelligent robots have to be given environmental information to perform tasks. In this paper an intelligent robot, that is, a cleaning robot used a sensor fusing method of two sensors: LRF and StarGazer, and then was able to obtain the information. Throughout wall following using laser displacement sensor, LRF, the working area is built during the robot turn one cycle around the area. After the process of wall following, a path planning which is able to execute the work effectively is established using flow network algorithm. This paper describes an algorithm for minimal turning complete coverage path planning for intelligent robots. This algorithm divides the whole working area by cellular decomposition, and then provides the path planning among the cells employing flow networks. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The proposed algorithm is applied to two different working areas, and verified that it is an optimal path planning method.

LOS 알고리듬과 미지 입력 관측기에 기초한 선도-추종 대형 제어 (LOS (Line of Sight) Algorithm and Unknown Input Observer Based Leader-Follower Formation Control)

  • 윤석민;여태경;박성재;홍섭;김상봉
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.207-214
    • /
    • 2010
  • This paper proposes about decentralized control approach based Leader-Follower formation control using LOS (Line of Sight) algorithm and unknown input observer. The position of robots which is a basic information in multi-robot or single robot motion control is determined by localization algorithm fusing UPS (Ultrasonic Position System) and kinematics model. For formation control, a decentralized control approach individually installing a local controller in leader and follower robot is adopted. Leader robot is controlled to track a specified trajectory by LOS algorithm, and the other robots follow the leader by local controller based on tracking platoon level function, self-sensing data and estimated information from unknown input observer. The performance of proposed method is proven through the formation experiment of two vehicle models.

mGA를 이용한 축구 로봇의 속도 제어 (Speed Control of Soccer Robot Using messy Genetic Algorithm)

  • 김정찬;주영훈;박현빈
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.590-595
    • /
    • 2003
  • 본 논문에서는 mGA를 이용해 축구로봇의 속도를 제어하는 새로운 기법을 제안하였다 축구 로봇의 목표를 최소 시간 내에 도착하기 위해 속도제어에 크게 영향을 미치는 거리 오차와 각도 오차 등의 비율을 나타내는 각종 파라미터가 포함되어 있는 제어 함수를 제안하였다. 이들 파라미터들을 mGA을 이용하여 최적의 값들을 탐색함으로써 변화되는 환경 속에서도 로봇의 목적지에 최소 시간 내에 이동하도록 속도제어 전략을 제안한다.

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF

An Optimized Random Tree and Particle Swarm Algorithm For Distribution Environments

  • Feng, Zhou;Lee, Un-Kon
    • 유통과학연구
    • /
    • 제13권6호
    • /
    • pp.11-15
    • /
    • 2015
  • Purpose - Robot path planning, a constrained optimization problem, has been an active research area with many methods developed to tackle it. This study proposes the use of a Rapidly-exploring Random Tree and Particle Swarm Optimizer algorithm for path planning. Research design, data, and methodology - The grid method is built to describe the working space of the mobile robot, then the Rapidly-exploring Random Tree algorithm is applied to obtain the global navigation path and the Particle Swarm Optimizer algorithm is adopted to obtain the best path. Results - Computer experiment results demonstrate that this novel algorithm can rapidly plan an optimal path in a cluttered environment. Successful obstacle avoidance is achieved, the model is robust, and performs reliably. The effectiveness and efficiency of the proposed algorithm is demonstrated through simulation studies. Conclusions - The findings could provide insights to the validity and practicability of the method. This method makes it is easy to build a model and meet real-time demand for mobile robot navigation with a simple algorithm, which results in a certain practical value for distribution environments.

Subgoal Generation Algorithm for Effective Composition of Path-Planning

  • Kim, Chan-Hoi;Park, Jong-Koo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1496-1499
    • /
    • 2004
  • In this paper, we deal with a novel path planning algorithm to find collision-free path for a moving robot to find an appropriate path from initial position to goal position. The robot should make progress by avoiding obstacles located at unknown position. Such problem is called the path planning. We propose so called the subgoal generation algorithm to find an effective collision-free path. The generation and selection of the subgoal are the key point of this algorithm. Several subgoals, if necessary, are generated by analyzing the map information. The subgoal is the candidate for the final path to be pass through. Then selection algorithm is executed to choose appropriate subgoal to construct a correct path. Deep and through explanations are given for the proposed algorithm. Simulation example is given to show the effectiveness of the proposed algorithm.

  • PDF

로봇의 안전한 물체 접근을 위한 제어기 구성 (Controller Design for a Robot's Safe Contact on an Object)

  • 신완재;박장현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1078-1081
    • /
    • 2004
  • A robot manipulator is usually operated in two modes: free motion and constraint motion depending on whether the robot comes into contact with the environment or not. At the moment of contact, impact occurs, and sometimes, it possibly degrade the robot's performance by vibration and at worst, shortens its lifetime. In this article, a new proposed algorithm is described by introducing a command signal modification method on the basis of impedance control and a validity of the proposed algorithm is demonstrated by showing a simulation and an experiment.

  • PDF