• 제목/요약/키워드: robot's position control

검색결과 245건 처리시간 0.024초

제조공정자동화를 위한 다관절 아암의 정밀위치제어에 관한 연구 (A Study on Precise Position Control of Articulated Arm for Manufacturing Process Automation)

  • 박인만;구영목;조상영;양준석
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.181-190
    • /
    • 2015
  • This paper presents a new approach to control the position of robot arm in workspace a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme was applied. Since parameters of the robot arm such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters was considered as a external disturbance force. To identify the known parameters, an improved robust control algorithm is directly derived from the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using SCARA arm with four joints.

누적된 거리정보를 이용하는 저가 IR 센서 기반의 위치추정 (Low-Cost IR Sensor-based Localization Using Accumulated Range Information)

  • 최윤규;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.845-850
    • /
    • 2009
  • Localization which estimates a robot's position and orientation in a given environment is very important for mobile robot navigation. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to increasing the success rate of low-cost sensor-based localization. In this paper, both the previous and the current data obtained from the IR sensors are used for localization in order to utilize as much environment information as possible without increasing the number of sensors. The sensor model used in the monte carlo localization (MCL) is modified so that the accumulated range information may be used to increase the accuracy in estimating the current robot pose. The experimental results show that the proposed method can robustly estimate the robot's pose in indoor environments with several similar places.

완충기를 가진 로봇다리의 동역학 해석 및 동적 보행제어 (Dynamic analysis and control of a robot leg with a shock absorber)

  • 오창근;강성철;이수용;김문상;유홍희
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.768-778
    • /
    • 1998
  • Human beings usually absorb a shock from terrain during walking through the damping effects of joints, muscles and skin. With this analogy, a robot-leg with a shock absorber is built to absorb the impact forces at its foot during high-speed walking on irregular terrain. To control the hip position while walking, the dynamic controller suitable for high speed walking is designed and implemented based on a dynamic model by Kane's equation. The hip position tracking performances of various controllers (PID controller, computed torque controller and feedforward torque controller) are compared through the experiments of the real robot-leg.

리니어 모터를 이용한 고속 고정밀 갠트리형 소형 데스크탑 로봇 개발 (Development of small gantry desktop robot of high speed and high precision using linear motor)

  • 조성훈;최우천;김용일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1866-1870
    • /
    • 2005
  • Typical small desktop robots have limied application due to their intrinsic feaures like friction, backlash, etc. However, a newly developed small gantry desktop robot needs smaller footprint and shows better performance in position accuracy, velocity, and acceleration. In order to achieve such results, synchronization control of two axes, position compensation methods in plane are suggested.

  • PDF

직접명령 방식 인터넷 주행로봇 시스템의 거리 오차 보상 (Distance Error Compensation of Direct Control Type Internet-based Mobile Robot System)

  • 이강희;김수현;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.273-279
    • /
    • 2004
  • This research is concerned with the development of an Internet-based robot system, which is insensitive to the unpredictable internet time delay. For this purpose, a simple mobile robot system that moves in response to the user s direct control on the internet has been developed. The time delay in data transmission is an important problem for the construction of this kind of system. Therefore, the PPS (Position Prediction Simulator) is suggested and implemented to compensate for the time delay problem of the internet. The simulation and experimental results show that the distance error can be reduced using the developed PPS.

자기동조 PID 제어기를 이용한 로보트 매니플레이터의 위치제어 (Position control of robot manipulator using self-turning PID controller)

  • 김유택;이재호;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.41-44
    • /
    • 1988
  • This paper represents the study of an effective self-tuning PID control for a robot manipulator to track a reference trajectory in spite of the presence of nonlinearities and parameters uncertainties in robot dynamic models. In this control scheme, an error model of the manipulator is established, for the first time, by difference between joint reference trajectory and tracked trajectory. It's model Parameters are estimated by the recursive least-square identification algorithm, and classical controller parameters are determined by pole placement method. A computer simulation study was conducted to demonstrate performance of the proposed self-tuning PID control in joint-based coordinates for a robot with payload.

  • PDF

Developement and control of a sensor based quadruped walking robot

  • Bien, Zeungnam;Lee, Yun-Jung;Suh, Il-Hong;Lee, Ji-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1087-1092
    • /
    • 1990
  • This paper describes the development and control of a quadruped walking robot, named as KAISER-II. The control system with multiprocessor based hierachical structure is developed. In order to navigate autonomously on a rough terrain, an identification algorithm for robot's position is proposed using 3-D vision and guide-mark pattern Also, a simple attitude control algorithm is included using force sensors. Through experimental results, it is shown that the robot can not only walk statically on even terrain but also cross over or go through the artificially made obstacles such as stairs, horizontal bar and tunnel-typed one.

  • PDF

End-point position control of a flexible arm by PID self-tuning fuzzy controller

  • Yang, G.T.;Ahn, S.D.;Lee, S.C.;Chonan, S.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.496-500
    • /
    • 1993
  • This paper presents an end-point position control of 1-link flexible robot arm by the PID self-tuning fuzzy algorithm. The governing equation is derived by the extended Hamilton's principle and based on the Bernoullie-Euler beam theory. The governing equation is solved by applying the Laplace transform and the numerical inversion method. The arm is mounted on the translational mechanism driven by a ballscrew whose rotation is controlled by dcservomotor. Tip position is controlled by the PID self-tuning fuzzy algorithm so that it follows a desired position. This paper shows the experimental and theoretical results of tip dispalcement, and also shows the good effects reducing the residual vibration of the end-point.

  • PDF

실시간 운영체제 기반의 복강경 수술 로봇의 모터제어 시스템에 관한 연구 (A Study of a RealTime OS Based Motor Control System for Laparoscopic Surgery Robot)

  • 송승준;김용;최재순;배진용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.218-221
    • /
    • 2006
  • This paper reports on a Realtime OS based motor control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. The system has a conventional master-slave robot configuration and the control system consists of joint controllers, host controllers, and power units. The robot features (1) a compact slave robot with 5 DOF (Degree Of Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously, and (2) direct 1:1 correspondence in the joint of master and slave robot that simplifies control algorithm and enhances reliability. Each master, slave and GUI (Graphical User Interface) host has a dedicated RTOS (RealTime OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) Each master and slave controller set pair has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication. Total 4 pairs of the master/slave manipulators as current are monitored by one host controller for operation monitoring and higher level motion control. The system showed acceptable performance in both position control precision and master-slave motion synchronization and is now under further development for better safety and control fidelity for clinically applicable prototype.

  • PDF

3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발 (Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition)

  • 신찬배;김진대
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.