• Title/Summary/Keyword: road subsidence

Search Result 45, Processing Time 0.029 seconds

A Study on Risk Evaluation Method of Ground Subsidence around Sewer (하수관로 주변 도로함몰 위험도 평가 방법에 관한 연구)

  • Kim, Jinyoung;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.7
    • /
    • pp.13-18
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. In particular, in the case of old sewer pipes which are attracting attention as a main cause of road subsidence, the management of sewer pipe replacement, repair and reinforcement is being performed depending on the burial year. Therefore, in this study, we tried to suggest a reliable road subsidence risk assessment method considering various sewer specifications and surrounding environment information and CCTV exploration result and GPR exploration result.

The Road Subsidence Status and Safety Improvement Plans (도로함몰 실태와 안전관리 개선 방안)

  • Bae, Yoon-Shin;Kim, Kyoon-Tai;Lee, Sang-Yum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.545-552
    • /
    • 2017
  • Ground subsidence can result in the formation of sinkholes, potholes, settlement of structures, and road subsidence. Road subsidence is described as the sudden collapse of the road surface into subsurface cavities caused by the loss of bearing capacity in the ground, such as the dissolution of limestone by fluid flow in the surface causing the formation of voids leading to subsidence at the surface. Road subsidence occurs about 665 times annually, and this incidence has been increasing until 2013. Damaged underground facilities, management negligence, and lowering of the ground water table have been the causes of road subsidence in Seoul. Seoul metropolitan government announced special management counter plans to relieve the anxieties and make the roads safe for passing. Construction sites, such as excavation works, need to be managed properly because they have strong potential to induce road subsidence. The aim of this study was to identify the main causes of road subsidence and suggest management plans. First, life cycle cost analysis revealed the daytime construction to be more appropriate than nighttime. In addition, by analyzing the limitations of using sand as a backfill material, it is proposed to use a flowable backfill material instead of sand. Finally, to reduce the blind spots, which is a problem in surveying the road pavement conditions of local governments, the road to be managed is divided into several zones, and a specialized agency is selected for each zone and a method of surveying the blind spots through collaboration is suggested.

DEM Simulation on the Initiation and Development of Road Subsidence (개별요소법을 활용한 도로함몰 발생과 전개거동 예측)

  • Kim, Yeonho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.43-53
    • /
    • 2017
  • Road subsidence, frequently occurring in urban areas, is caused by collapsing of surface layer due to underground cavities followed by a loss of soils. To better understand this phenomenon, the mechanism of cavity formation should be identified firstly. Two kinds of possible subsidence mechanisms were established through previous case studies and the numerical analyses based on Distinct Element Method were conducted for each of these mechanisms. It was confirmed that particle loss and surface settlement can develop differently depending on slit size, void ratio, and particle shape among the various factors influencing the road subsidence. The result demonstrated that the effects of varying cavity diameter and depth could be quantified as a damage chart.

Experimental Study on Road-Subsidence Characteristics in Unsaturated Sandy Soils (불포화 사질토의 도로함몰 특성에 관한 실험적 연구)

  • Kweon, Gichul
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : The purpose of this study is to identify the road-subsidence mechanism in unsaturated sandy soils. METHODS : A series of soil chamber tests were conducted under various conditions. RESULTS : The cavity-expansion characteristics in unsaturated sandy soils due to seepage were affected by the outlet size, seepage intensity, relative density, and fine content. CONCLUSIONS : In unsaturated sandy soils, the cavity-expansion speed was affected by the outlet size, relative density, seepage intensity, and clay content; however, the cavity-expansion shape was very similar. As the outlet size and seepage intensity increased, the cavity-expansion speed increased. As the relative density increased, the cavity-expansion speed increased because of a sudden decrease in shear strength, resulting from the increased saturation (reduction of matric suction). The cavity expanded faster with the increasing clay content, up to a certain threshold. It expanded at a slower rate once it passed the threshold. Finally, it reached a stable state where the cavity did not expand due to seepage.

Optimal Geophysical Exploration Performance Method for Common Detection Behind a Sewer (하수관로 배면 공동 탐지를 위한 최적 물리탐사 방법)

  • Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.11-17
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. Especially, in the case of old sewer which are attracting attention as a main cause of ground subsidence, the risk of subsidence is calculated indirectly through CCTV exploration. Currently, we are finding cavity through GPR exploration. However, it is difficult to find the sewer back cavity because it is explored from the surface of the road. Thus, the nondestructive cavity exploration techniques was investigated in this study and we confirmed the applicability through experiments on the test-bed. In this study a new quantitative method is proposed to detect the cavity around sewer.

A case study for the asphalt damage with the subsidence (도로 침하에 따른 아스팔트 파손에 대한 연구)

  • Kang, In-Won;Cho, Sang-Hoon;Sim, Chul-Woo;Kim, Dong-Chul
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • This example was able to focus on the long usage of the pavement that it was merely through the oxidation of the asphalt pavement which it could contact with on the road in the industrial housing complex and correlation regulation of the asphalt subsidence with the load in basic Infra of the configuration. The problem in conjunction with the subsidence (transformation) was interpreted as a problem of the subsidence of each pavement layer to lead the subsidence of the road or the transformation to packaging side asphalt pavement, but the traffic number of times of the heavy vehicle highlights for main problems with the road where is concentrated. In the case of general asphalt paving, it thinks it exposes light, and to study a general phenomenon for the asphalt transformation and a cause for a pavement construction method and the property of material used for pavement and a complement method by the case study at this time of the compound with the heavy vehicle traffic that it can become clear that small success transformation occurs at a point in time when 1-2 years more pass, and a fatigue rift occurs by ultraviolet rays, the oxidation with the contact with the air afterwards, and described beginning to use by the above.

Electrical resistivity survey and interpretation considering excavation effects for the detection of loose ground in urban area

  • Seo Young Song;Bitnarae Kim;Ahyun Cho;Juyeon Jeong;Dongkweon Lee;Myung Jin Nam
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.109-119
    • /
    • 2023
  • Ground subsidence in urban areas due to excessive development and degraded underground facilities is a serious problem. Geophysical surveys have been conducted to estimate the distribution and scale of cavities and subsidence. In this study, electrical resistivity tomography (ERT) was performed near an area of road subsidence in an urban area. The subsidence arose due to groundwater leakage that carried soil into a neighboring excavation site. The ERT survey line was located between the main subsidence area and an excavation site. Because ERT data are affected by rapid topographic changes and surrounding structures, the influence of the excavation site on the data was analyzed through field-scale numerical modeling. The effect of an excavation should be considered when interpreting ERT data because it can lead to wrong anomalous results. A method for performing 2D inversion after correcting resistivity data for the effect of the excavation site was proposed. This method was initially tested using a field-scale numerical model that included the excavation site and subsurface anomaly, which was a loosened zone, and was then applied to field data. In addition, ERT data were interpreted using an existing in-house 3D algorithm, which considered the effect of excavation sites. The inversion results demonstrated that conductive anomalies in the loosened zone were greater compared to the inversion that did not consider the effects of excavation.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Correlation Analysis of the Occurrence of Ground Subsidence According to the Density of Underground Pipelines (지중관로 매설 밀집도에 따른 지반함몰 발생 상관 분석)

  • Kim, Jinyoung;Kang, Jaemo;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.23-29
    • /
    • 2021
  • Recently, ground subsidence has been steadily occurring mainly in downtown areas, threatening the safety of citizens. Under the road, various underground facilities such as water supply pipe, sewage pipe, and communication pipe are buried. Due to the aging of these underground facilities and the reckless development of the underground, it is acting as a cause of ground subsidence. Although there is a result of analyzing the risk of ground subsidence according to the deterioration of the existing pipeline, there is no result of analyzing the risk of ground subsidence using the density of pipelines indicating ground disturbance. Therefore, in this study, the density of the underground space was analyzed using the data of six types of representative underground pipelines in Seoul, and a study was conducted on whether there is a correlation with the ground subsidence. As a result, it was found that the density of underground facilities is high in the area where the ground subsidence occurred, indicating that the density of pipelines have an effect on the ground subsidence.

Application of resistivity monitoring to examine the grouting effect

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.79-82
    • /
    • 2006
  • This paper presents to examine the ability of an electrical resistivity method to monitor the grouting effect at subsidence area. To monitor the changes in ground resistivity before and during the grout, series of electrical resistivity monitoring surveys have been conducted. Data has acquired in the form of grid making nine lines parallel to road and four lines traverse the road. Two kinds of electrode arrays modify pole-pole and dipole-dipole arrays were used during resistivity data acquisition. In this paper, the results show that electrical prospecting is an effective method to detect low resistivity imaging zone by grout during the ground reinforcement.

  • PDF